Metamath Proof Explorer


Theorem ip0r

Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ip0l.z Z = 0 F
ip0l.o 0 ˙ = 0 W
Assertion ip0r W PreHil A V A , ˙ 0 ˙ = Z

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ip0l.z Z = 0 F
5 ip0l.o 0 ˙ = 0 W
6 1 2 3 4 5 ip0l W PreHil A V 0 ˙ , ˙ A = Z
7 6 fveq2d W PreHil A V 0 ˙ , ˙ A * F = Z * F
8 phllmod W PreHil W LMod
9 8 adantr W PreHil A V W LMod
10 3 5 lmod0vcl W LMod 0 ˙ V
11 9 10 syl W PreHil A V 0 ˙ V
12 eqid * F = * F
13 1 2 3 12 ipcj W PreHil 0 ˙ V A V 0 ˙ , ˙ A * F = A , ˙ 0 ˙
14 13 3expa W PreHil 0 ˙ V A V 0 ˙ , ˙ A * F = A , ˙ 0 ˙
15 14 an32s W PreHil A V 0 ˙ V 0 ˙ , ˙ A * F = A , ˙ 0 ˙
16 11 15 mpdan W PreHil A V 0 ˙ , ˙ A * F = A , ˙ 0 ˙
17 1 phlsrng W PreHil F *-Ring
18 17 adantr W PreHil A V F *-Ring
19 12 4 srng0 F *-Ring Z * F = Z
20 18 19 syl W PreHil A V Z * F = Z
21 7 16 20 3eqtr3d W PreHil A V A , ˙ 0 ˙ = Z