Metamath Proof Explorer


Theorem ip1i

Description: Equation 6.47 of Ponnusamy p. 362. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ip1i.a A X
ip1i.b B X
ip1i.c C X
Assertion ip1i A G B P C + A G -1 S B P C = 2 A P C

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ip1i.a A X
7 ip1i.b B X
8 ip1i.c C X
9 eqid norm CV U = norm CV U
10 ax-1cn 1
11 1 2 3 4 5 6 7 8 9 10 ip1ilem A G B P C + A G -1 S B P C = 2 A P C