Metamath Proof Explorer


Theorem ip2di

Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipdir.g + ˙ = + W
ipdir.p ˙ = + F
ip2di.1 φ W PreHil
ip2di.2 φ A V
ip2di.3 φ B V
ip2di.4 φ C V
ip2di.5 φ D V
Assertion ip2di φ A + ˙ B , ˙ C + ˙ D = A , ˙ C ˙ B , ˙ D ˙ A , ˙ D ˙ B , ˙ C

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipdir.g + ˙ = + W
5 ipdir.p ˙ = + F
6 ip2di.1 φ W PreHil
7 ip2di.2 φ A V
8 ip2di.3 φ B V
9 ip2di.4 φ C V
10 ip2di.5 φ D V
11 phllmod W PreHil W LMod
12 6 11 syl φ W LMod
13 3 4 lmodvacl W LMod C V D V C + ˙ D V
14 12 9 10 13 syl3anc φ C + ˙ D V
15 1 2 3 4 5 ipdir W PreHil A V B V C + ˙ D V A + ˙ B , ˙ C + ˙ D = A , ˙ C + ˙ D ˙ B , ˙ C + ˙ D
16 6 7 8 14 15 syl13anc φ A + ˙ B , ˙ C + ˙ D = A , ˙ C + ˙ D ˙ B , ˙ C + ˙ D
17 1 2 3 4 5 ipdi W PreHil A V C V D V A , ˙ C + ˙ D = A , ˙ C ˙ A , ˙ D
18 6 7 9 10 17 syl13anc φ A , ˙ C + ˙ D = A , ˙ C ˙ A , ˙ D
19 1 2 3 4 5 ipdi W PreHil B V C V D V B , ˙ C + ˙ D = B , ˙ C ˙ B , ˙ D
20 6 8 9 10 19 syl13anc φ B , ˙ C + ˙ D = B , ˙ C ˙ B , ˙ D
21 1 phlsrng W PreHil F *-Ring
22 srngring F *-Ring F Ring
23 ringcmn F Ring F CMnd
24 6 21 22 23 4syl φ F CMnd
25 eqid Base F = Base F
26 1 2 3 25 ipcl W PreHil B V C V B , ˙ C Base F
27 6 8 9 26 syl3anc φ B , ˙ C Base F
28 1 2 3 25 ipcl W PreHil B V D V B , ˙ D Base F
29 6 8 10 28 syl3anc φ B , ˙ D Base F
30 25 5 cmncom F CMnd B , ˙ C Base F B , ˙ D Base F B , ˙ C ˙ B , ˙ D = B , ˙ D ˙ B , ˙ C
31 24 27 29 30 syl3anc φ B , ˙ C ˙ B , ˙ D = B , ˙ D ˙ B , ˙ C
32 20 31 eqtrd φ B , ˙ C + ˙ D = B , ˙ D ˙ B , ˙ C
33 18 32 oveq12d φ A , ˙ C + ˙ D ˙ B , ˙ C + ˙ D = A , ˙ C ˙ A , ˙ D ˙ B , ˙ D ˙ B , ˙ C
34 1 2 3 25 ipcl W PreHil A V C V A , ˙ C Base F
35 6 7 9 34 syl3anc φ A , ˙ C Base F
36 1 2 3 25 ipcl W PreHil A V D V A , ˙ D Base F
37 6 7 10 36 syl3anc φ A , ˙ D Base F
38 25 5 cmn4 F CMnd A , ˙ C Base F A , ˙ D Base F B , ˙ D Base F B , ˙ C Base F A , ˙ C ˙ A , ˙ D ˙ B , ˙ D ˙ B , ˙ C = A , ˙ C ˙ B , ˙ D ˙ A , ˙ D ˙ B , ˙ C
39 24 35 37 29 27 38 syl122anc φ A , ˙ C ˙ A , ˙ D ˙ B , ˙ D ˙ B , ˙ C = A , ˙ C ˙ B , ˙ D ˙ A , ˙ D ˙ B , ˙ C
40 16 33 39 3eqtrd φ A + ˙ B , ˙ C + ˙ D = A , ˙ C ˙ B , ˙ D ˙ A , ˙ D ˙ B , ˙ C