Metamath Proof Explorer


Theorem ip2eq

Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses ip2eq.h , ˙ = 𝑖 W
ip2eq.v V = Base W
Assertion ip2eq W PreHil A V B V A = B x V x , ˙ A = x , ˙ B

Proof

Step Hyp Ref Expression
1 ip2eq.h , ˙ = 𝑖 W
2 ip2eq.v V = Base W
3 oveq2 A = B x , ˙ A = x , ˙ B
4 3 ralrimivw A = B x V x , ˙ A = x , ˙ B
5 phllmod W PreHil W LMod
6 eqid - W = - W
7 2 6 lmodvsubcl W LMod A V B V A - W B V
8 5 7 syl3an1 W PreHil A V B V A - W B V
9 oveq1 x = A - W B x , ˙ A = A - W B , ˙ A
10 oveq1 x = A - W B x , ˙ B = A - W B , ˙ B
11 9 10 eqeq12d x = A - W B x , ˙ A = x , ˙ B A - W B , ˙ A = A - W B , ˙ B
12 11 rspcv A - W B V x V x , ˙ A = x , ˙ B A - W B , ˙ A = A - W B , ˙ B
13 8 12 syl W PreHil A V B V x V x , ˙ A = x , ˙ B A - W B , ˙ A = A - W B , ˙ B
14 simp1 W PreHil A V B V W PreHil
15 simp2 W PreHil A V B V A V
16 simp3 W PreHil A V B V B V
17 eqid Scalar W = Scalar W
18 eqid - Scalar W = - Scalar W
19 17 1 2 6 18 ipsubdi W PreHil A - W B V A V B V A - W B , ˙ A - W B = A - W B , ˙ A - Scalar W A - W B , ˙ B
20 14 8 15 16 19 syl13anc W PreHil A V B V A - W B , ˙ A - W B = A - W B , ˙ A - Scalar W A - W B , ˙ B
21 20 eqeq1d W PreHil A V B V A - W B , ˙ A - W B = 0 Scalar W A - W B , ˙ A - Scalar W A - W B , ˙ B = 0 Scalar W
22 eqid 0 Scalar W = 0 Scalar W
23 eqid 0 W = 0 W
24 17 1 2 22 23 ipeq0 W PreHil A - W B V A - W B , ˙ A - W B = 0 Scalar W A - W B = 0 W
25 14 8 24 syl2anc W PreHil A V B V A - W B , ˙ A - W B = 0 Scalar W A - W B = 0 W
26 21 25 bitr3d W PreHil A V B V A - W B , ˙ A - Scalar W A - W B , ˙ B = 0 Scalar W A - W B = 0 W
27 5 3ad2ant1 W PreHil A V B V W LMod
28 17 lmodfgrp W LMod Scalar W Grp
29 27 28 syl W PreHil A V B V Scalar W Grp
30 eqid Base Scalar W = Base Scalar W
31 17 1 2 30 ipcl W PreHil A - W B V A V A - W B , ˙ A Base Scalar W
32 14 8 15 31 syl3anc W PreHil A V B V A - W B , ˙ A Base Scalar W
33 17 1 2 30 ipcl W PreHil A - W B V B V A - W B , ˙ B Base Scalar W
34 14 8 16 33 syl3anc W PreHil A V B V A - W B , ˙ B Base Scalar W
35 30 22 18 grpsubeq0 Scalar W Grp A - W B , ˙ A Base Scalar W A - W B , ˙ B Base Scalar W A - W B , ˙ A - Scalar W A - W B , ˙ B = 0 Scalar W A - W B , ˙ A = A - W B , ˙ B
36 29 32 34 35 syl3anc W PreHil A V B V A - W B , ˙ A - Scalar W A - W B , ˙ B = 0 Scalar W A - W B , ˙ A = A - W B , ˙ B
37 lmodgrp W LMod W Grp
38 5 37 syl W PreHil W Grp
39 2 23 6 grpsubeq0 W Grp A V B V A - W B = 0 W A = B
40 38 39 syl3an1 W PreHil A V B V A - W B = 0 W A = B
41 26 36 40 3bitr3d W PreHil A V B V A - W B , ˙ A = A - W B , ˙ B A = B
42 13 41 sylibd W PreHil A V B V x V x , ˙ A = x , ˙ B A = B
43 4 42 impbid2 W PreHil A V B V A = B x V x , ˙ A = x , ˙ B