Metamath Proof Explorer


Theorem ip2i

Description: Equation 6.48 of Ponnusamy p. 362. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ip2i.8 A X
ip2i.9 B X
Assertion ip2i 2 S A P B = 2 A P B

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ip2i.8 A X
7 ip2i.9 B X
8 5 phnvi U NrmCVec
9 1 2 nvgcl U NrmCVec A X A X A G A X
10 8 6 6 9 mp3an A G A X
11 1 4 dipcl U NrmCVec A G A X B X A G A P B
12 8 10 7 11 mp3an A G A P B
13 12 addid1i A G A P B + 0 = A G A P B
14 eqid 0 vec U = 0 vec U
15 1 2 3 14 nvrinv U NrmCVec A X A G -1 S A = 0 vec U
16 8 6 15 mp2an A G -1 S A = 0 vec U
17 16 oveq1i A G -1 S A P B = 0 vec U P B
18 1 14 4 dip0l U NrmCVec B X 0 vec U P B = 0
19 8 7 18 mp2an 0 vec U P B = 0
20 17 19 eqtri A G -1 S A P B = 0
21 20 oveq2i A G A P B + A G -1 S A P B = A G A P B + 0
22 df-2 2 = 1 + 1
23 22 oveq1i 2 S A = 1 + 1 S A
24 ax-1cn 1
25 24 24 6 3pm3.2i 1 1 A X
26 1 2 3 nvdir U NrmCVec 1 1 A X 1 + 1 S A = 1 S A G 1 S A
27 8 25 26 mp2an 1 + 1 S A = 1 S A G 1 S A
28 1 3 nvsid U NrmCVec A X 1 S A = A
29 8 6 28 mp2an 1 S A = A
30 29 29 oveq12i 1 S A G 1 S A = A G A
31 27 30 eqtri 1 + 1 S A = A G A
32 23 31 eqtri 2 S A = A G A
33 32 oveq1i 2 S A P B = A G A P B
34 13 21 33 3eqtr4ri 2 S A P B = A G A P B + A G -1 S A P B
35 1 2 3 4 5 6 6 7 ip1i A G A P B + A G -1 S A P B = 2 A P B
36 34 35 eqtri 2 S A P B = 2 A P B