Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|
2 |
|
phllmhm.h |
|
3 |
|
phllmhm.v |
|
4 |
|
ipsubdir.m |
|
5 |
|
ipsubdir.s |
|
6 |
|
ip2subdi.p |
|
7 |
|
ip2subdi.1 |
|
8 |
|
ip2subdi.2 |
|
9 |
|
ip2subdi.3 |
|
10 |
|
ip2subdi.4 |
|
11 |
|
ip2subdi.5 |
|
12 |
|
eqid |
|
13 |
|
phllmod |
|
14 |
7 13
|
syl |
|
15 |
1
|
lmodring |
|
16 |
14 15
|
syl |
|
17 |
|
ringabl |
|
18 |
16 17
|
syl |
|
19 |
1 2 3 12
|
ipcl |
|
20 |
7 8 10 19
|
syl3anc |
|
21 |
1 2 3 12
|
ipcl |
|
22 |
7 8 11 21
|
syl3anc |
|
23 |
1 2 3 12
|
ipcl |
|
24 |
7 9 10 23
|
syl3anc |
|
25 |
12 6 5 18 20 22 24
|
ablsubsub4 |
|
26 |
25
|
oveq1d |
|
27 |
3 4
|
lmodvsubcl |
|
28 |
14 10 11 27
|
syl3anc |
|
29 |
1 2 3 4 5
|
ipsubdir |
|
30 |
7 8 9 28 29
|
syl13anc |
|
31 |
1 2 3 4 5
|
ipsubdi |
|
32 |
7 8 10 11 31
|
syl13anc |
|
33 |
1 2 3 4 5
|
ipsubdi |
|
34 |
7 9 10 11 33
|
syl13anc |
|
35 |
32 34
|
oveq12d |
|
36 |
|
ringgrp |
|
37 |
16 36
|
syl |
|
38 |
12 5
|
grpsubcl |
|
39 |
37 20 22 38
|
syl3anc |
|
40 |
1 2 3 12
|
ipcl |
|
41 |
7 9 11 40
|
syl3anc |
|
42 |
12 6 5 18 39 24 41
|
ablsubsub |
|
43 |
30 35 42
|
3eqtrd |
|
44 |
12 6
|
ringacl |
|
45 |
16 22 24 44
|
syl3anc |
|
46 |
12 6 5
|
abladdsub |
|
47 |
18 20 41 45 46
|
syl13anc |
|
48 |
26 43 47
|
3eqtr4d |
|