Metamath Proof Explorer


Theorem ipass

Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipdir.f K = Base F
ipass.s · ˙ = W
ipass.p × ˙ = F
Assertion ipass W PreHil A K B V C V A · ˙ B , ˙ C = A × ˙ B , ˙ C

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipdir.f K = Base F
5 ipass.s · ˙ = W
6 ipass.p × ˙ = F
7 eqid x V x , ˙ C = x V x , ˙ C
8 1 2 3 7 phllmhm W PreHil C V x V x , ˙ C W LMHom ringLMod F
9 8 3ad2antr3 W PreHil A K B V C V x V x , ˙ C W LMHom ringLMod F
10 simpr1 W PreHil A K B V C V A K
11 simpr2 W PreHil A K B V C V B V
12 rlmvsca F = ringLMod F
13 6 12 eqtri × ˙ = ringLMod F
14 1 4 3 5 13 lmhmlin x V x , ˙ C W LMHom ringLMod F A K B V x V x , ˙ C A · ˙ B = A × ˙ x V x , ˙ C B
15 9 10 11 14 syl3anc W PreHil A K B V C V x V x , ˙ C A · ˙ B = A × ˙ x V x , ˙ C B
16 phllmod W PreHil W LMod
17 16 adantr W PreHil A K B V C V W LMod
18 3 1 5 4 lmodvscl W LMod A K B V A · ˙ B V
19 17 10 11 18 syl3anc W PreHil A K B V C V A · ˙ B V
20 oveq1 x = A · ˙ B x , ˙ C = A · ˙ B , ˙ C
21 ovex x , ˙ C V
22 20 7 21 fvmpt3i A · ˙ B V x V x , ˙ C A · ˙ B = A · ˙ B , ˙ C
23 19 22 syl W PreHil A K B V C V x V x , ˙ C A · ˙ B = A · ˙ B , ˙ C
24 oveq1 x = B x , ˙ C = B , ˙ C
25 24 7 21 fvmpt3i B V x V x , ˙ C B = B , ˙ C
26 11 25 syl W PreHil A K B V C V x V x , ˙ C B = B , ˙ C
27 26 oveq2d W PreHil A K B V C V A × ˙ x V x , ˙ C B = A × ˙ B , ˙ C
28 15 23 27 3eqtr3d W PreHil A K B V C V A · ˙ B , ˙ C = A × ˙ B , ˙ C