Metamath Proof Explorer


Theorem ipassi

Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
Assertion ipassi A B X C X A S B P C = A B P C

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 oveq2 B = if B X B 0 vec U A S B = A S if B X B 0 vec U
7 6 oveq1d B = if B X B 0 vec U A S B P C = A S if B X B 0 vec U P C
8 oveq1 B = if B X B 0 vec U B P C = if B X B 0 vec U P C
9 8 oveq2d B = if B X B 0 vec U A B P C = A if B X B 0 vec U P C
10 7 9 eqeq12d B = if B X B 0 vec U A S B P C = A B P C A S if B X B 0 vec U P C = A if B X B 0 vec U P C
11 10 imbi2d B = if B X B 0 vec U A A S B P C = A B P C A A S if B X B 0 vec U P C = A if B X B 0 vec U P C
12 oveq2 C = if C X C 0 vec U A S if B X B 0 vec U P C = A S if B X B 0 vec U P if C X C 0 vec U
13 oveq2 C = if C X C 0 vec U if B X B 0 vec U P C = if B X B 0 vec U P if C X C 0 vec U
14 13 oveq2d C = if C X C 0 vec U A if B X B 0 vec U P C = A if B X B 0 vec U P if C X C 0 vec U
15 12 14 eqeq12d C = if C X C 0 vec U A S if B X B 0 vec U P C = A if B X B 0 vec U P C A S if B X B 0 vec U P if C X C 0 vec U = A if B X B 0 vec U P if C X C 0 vec U
16 15 imbi2d C = if C X C 0 vec U A A S if B X B 0 vec U P C = A if B X B 0 vec U P C A A S if B X B 0 vec U P if C X C 0 vec U = A if B X B 0 vec U P if C X C 0 vec U
17 eqid 0 vec U = 0 vec U
18 1 17 5 elimph if B X B 0 vec U X
19 1 17 5 elimph if C X C 0 vec U X
20 1 2 3 4 5 18 19 ipasslem11 A A S if B X B 0 vec U P if C X C 0 vec U = A if B X B 0 vec U P if C X C 0 vec U
21 11 16 20 dedth2h B X C X A A S B P C = A B P C
22 21 com12 A B X C X A S B P C = A B P C
23 22 3impib A B X C X A S B P C = A B P C