Metamath Proof Explorer


Theorem ipasslem10

Description: Lemma for ipassi . Show the inner product associative law for the imaginary number _i . (Contributed by NM, 24-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ipasslem10.a A X
ipasslem10.b B X
ipasslem10.6 N = norm CV U
Assertion ipasslem10 i S A P B = i A P B

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ipasslem10.a A X
7 ipasslem10.b B X
8 ipasslem10.6 N = norm CV U
9 5 phnvi U NrmCVec
10 ax-icn i
11 1 3 nvscl U NrmCVec i A X i S A X
12 9 10 6 11 mp3an i S A X
13 1 2 3 8 4 4ipval2 U NrmCVec B X i S A X 4 B P i S A = N B G i S A 2 - N B G -1 S i S A 2 + i N B G i S i S A 2 N B G i S i S A 2
14 9 7 12 13 mp3an 4 B P i S A = N B G i S A 2 - N B G -1 S i S A 2 + i N B G i S i S A 2 N B G i S i S A 2
15 4cn 4
16 negicn i
17 1 4 dipcl U NrmCVec B X A X B P A
18 9 7 6 17 mp3an B P A
19 15 16 18 mul12i 4 i B P A = i 4 B P A
20 1 2 nvgcl U NrmCVec B X i S A X B G i S A X
21 9 7 12 20 mp3an B G i S A X
22 1 8 9 21 nvcli N B G i S A
23 22 recni N B G i S A
24 23 sqcli N B G i S A 2
25 neg1cn 1
26 1 3 nvscl U NrmCVec 1 i S A X -1 S i S A X
27 9 25 12 26 mp3an -1 S i S A X
28 1 2 nvgcl U NrmCVec B X -1 S i S A X B G -1 S i S A X
29 9 7 27 28 mp3an B G -1 S i S A X
30 1 8 9 29 nvcli N B G -1 S i S A
31 30 recni N B G -1 S i S A
32 31 sqcli N B G -1 S i S A 2
33 24 32 subcli N B G i S A 2 N B G -1 S i S A 2
34 1 3 nvscl U NrmCVec i i S A X i S i S A X
35 9 10 12 34 mp3an i S i S A X
36 1 2 nvgcl U NrmCVec B X i S i S A X B G i S i S A X
37 9 7 35 36 mp3an B G i S i S A X
38 1 8 9 37 nvcli N B G i S i S A
39 38 recni N B G i S i S A
40 39 sqcli N B G i S i S A 2
41 1 3 nvscl U NrmCVec i i S A X i S i S A X
42 9 16 12 41 mp3an i S i S A X
43 1 2 nvgcl U NrmCVec B X i S i S A X B G i S i S A X
44 9 7 42 43 mp3an B G i S i S A X
45 1 8 9 44 nvcli N B G i S i S A
46 45 recni N B G i S i S A
47 46 sqcli N B G i S i S A 2
48 40 47 subcli N B G i S i S A 2 N B G i S i S A 2
49 10 48 mulcli i N B G i S i S A 2 N B G i S i S A 2
50 33 49 addcomi N B G i S A 2 - N B G -1 S i S A 2 + i N B G i S i S A 2 N B G i S i S A 2 = i N B G i S i S A 2 N B G i S i S A 2 + N B G i S A 2 - N B G -1 S i S A 2
51 1 2 nvgcl U NrmCVec B X A X B G A X
52 9 7 6 51 mp3an B G A X
53 1 8 9 52 nvcli N B G A
54 53 recni N B G A
55 54 sqcli N B G A 2
56 1 3 nvscl U NrmCVec 1 A X -1 S A X
57 9 25 6 56 mp3an -1 S A X
58 1 2 nvgcl U NrmCVec B X -1 S A X B G -1 S A X
59 9 7 57 58 mp3an B G -1 S A X
60 1 8 9 59 nvcli N B G -1 S A
61 60 recni N B G -1 S A
62 61 sqcli N B G -1 S A 2
63 55 62 subcli N B G A 2 N B G -1 S A 2
64 1 3 nvscl U NrmCVec i A X i S A X
65 9 16 6 64 mp3an i S A X
66 1 2 nvgcl U NrmCVec B X i S A X B G i S A X
67 9 7 65 66 mp3an B G i S A X
68 1 8 9 67 nvcli N B G i S A
69 68 recni N B G i S A
70 69 sqcli N B G i S A 2
71 24 70 subcli N B G i S A 2 N B G i S A 2
72 10 71 mulcli i N B G i S A 2 N B G i S A 2
73 16 63 72 adddii i N B G A 2 - N B G -1 S A 2 + i N B G i S A 2 N B G i S A 2 = i N B G A 2 N B G -1 S A 2 + i i N B G i S A 2 N B G i S A 2
74 10 10 6 3pm3.2i i i A X
75 1 3 nvsass U NrmCVec i i A X i i S A = i S i S A
76 9 74 75 mp2an i i S A = i S i S A
77 ixi i i = 1
78 77 oveq1i i i S A = -1 S A
79 76 78 eqtr3i i S i S A = -1 S A
80 79 oveq2i B G i S i S A = B G -1 S A
81 80 fveq2i N B G i S i S A = N B G -1 S A
82 81 oveq1i N B G i S i S A 2 = N B G -1 S A 2
83 10 10 mulneg1i i i = i i
84 77 negeqi i i = -1
85 negneg1e1 -1 = 1
86 83 84 85 3eqtri i i = 1
87 86 oveq1i i i S A = 1 S A
88 16 10 6 3pm3.2i i i A X
89 1 3 nvsass U NrmCVec i i A X i i S A = i S i S A
90 9 88 89 mp2an i i S A = i S i S A
91 1 3 nvsid U NrmCVec A X 1 S A = A
92 9 6 91 mp2an 1 S A = A
93 87 90 92 3eqtr3i i S i S A = A
94 93 oveq2i B G i S i S A = B G A
95 94 fveq2i N B G i S i S A = N B G A
96 95 oveq1i N B G i S i S A 2 = N B G A 2
97 82 96 oveq12i N B G i S i S A 2 N B G i S i S A 2 = N B G -1 S A 2 N B G A 2
98 97 oveq2i i N B G i S i S A 2 N B G i S i S A 2 = i N B G -1 S A 2 N B G A 2
99 63 mulm1i -1 N B G A 2 N B G -1 S A 2 = N B G A 2 N B G -1 S A 2
100 55 62 negsubdi2i N B G A 2 N B G -1 S A 2 = N B G -1 S A 2 N B G A 2
101 99 100 eqtr2i N B G -1 S A 2 N B G A 2 = -1 N B G A 2 N B G -1 S A 2
102 101 oveq2i i N B G -1 S A 2 N B G A 2 = i -1 N B G A 2 N B G -1 S A 2
103 10 25 63 mulassi i -1 N B G A 2 N B G -1 S A 2 = i -1 N B G A 2 N B G -1 S A 2
104 102 103 eqtr4i i N B G -1 S A 2 N B G A 2 = i -1 N B G A 2 N B G -1 S A 2
105 10 mulm1i -1 i = i
106 25 10 105 mulcomli i -1 = i
107 106 oveq1i i -1 N B G A 2 N B G -1 S A 2 = i N B G A 2 N B G -1 S A 2
108 98 104 107 3eqtri i N B G i S i S A 2 N B G i S i S A 2 = i N B G A 2 N B G -1 S A 2
109 25 10 6 3pm3.2i 1 i A X
110 1 3 nvsass U NrmCVec 1 i A X -1 i S A = -1 S i S A
111 9 109 110 mp2an -1 i S A = -1 S i S A
112 105 oveq1i -1 i S A = i S A
113 111 112 eqtr3i -1 S i S A = i S A
114 113 oveq2i B G -1 S i S A = B G i S A
115 114 fveq2i N B G -1 S i S A = N B G i S A
116 115 oveq1i N B G -1 S i S A 2 = N B G i S A 2
117 116 oveq2i N B G i S A 2 N B G -1 S i S A 2 = N B G i S A 2 N B G i S A 2
118 71 mulid2i 1 N B G i S A 2 N B G i S A 2 = N B G i S A 2 N B G i S A 2
119 117 118 eqtr4i N B G i S A 2 N B G -1 S i S A 2 = 1 N B G i S A 2 N B G i S A 2
120 86 oveq1i i i N B G i S A 2 N B G i S A 2 = 1 N B G i S A 2 N B G i S A 2
121 119 120 eqtr4i N B G i S A 2 N B G -1 S i S A 2 = i i N B G i S A 2 N B G i S A 2
122 16 10 71 mulassi i i N B G i S A 2 N B G i S A 2 = i i N B G i S A 2 N B G i S A 2
123 121 122 eqtri N B G i S A 2 N B G -1 S i S A 2 = i i N B G i S A 2 N B G i S A 2
124 108 123 oveq12i i N B G i S i S A 2 N B G i S i S A 2 + N B G i S A 2 - N B G -1 S i S A 2 = i N B G A 2 N B G -1 S A 2 + i i N B G i S A 2 N B G i S A 2
125 73 124 eqtr4i i N B G A 2 - N B G -1 S A 2 + i N B G i S A 2 N B G i S A 2 = i N B G i S i S A 2 N B G i S i S A 2 + N B G i S A 2 - N B G -1 S i S A 2
126 50 125 eqtr4i N B G i S A 2 - N B G -1 S i S A 2 + i N B G i S i S A 2 N B G i S i S A 2 = i N B G A 2 - N B G -1 S A 2 + i N B G i S A 2 N B G i S A 2
127 1 2 3 8 4 4ipval2 U NrmCVec B X A X 4 B P A = N B G A 2 - N B G -1 S A 2 + i N B G i S A 2 N B G i S A 2
128 9 7 6 127 mp3an 4 B P A = N B G A 2 - N B G -1 S A 2 + i N B G i S A 2 N B G i S A 2
129 128 oveq2i i 4 B P A = i N B G A 2 - N B G -1 S A 2 + i N B G i S A 2 N B G i S A 2
130 126 129 eqtr4i N B G i S A 2 - N B G -1 S i S A 2 + i N B G i S i S A 2 N B G i S i S A 2 = i 4 B P A
131 19 130 eqtr4i 4 i B P A = N B G i S A 2 - N B G -1 S i S A 2 + i N B G i S i S A 2 N B G i S i S A 2
132 14 131 eqtr4i 4 B P i S A = 4 i B P A
133 1 4 dipcl U NrmCVec B X i S A X B P i S A
134 9 7 12 133 mp3an B P i S A
135 16 18 mulcli i B P A
136 4ne0 4 0
137 134 135 15 136 mulcani 4 B P i S A = 4 i B P A B P i S A = i B P A
138 132 137 mpbi B P i S A = i B P A
139 138 fveq2i B P i S A = i B P A
140 1 4 dipcj U NrmCVec B X i S A X B P i S A = i S A P B
141 9 7 12 140 mp3an B P i S A = i S A P B
142 16 18 cjmuli i B P A = i B P A
143 25 10 cjmuli -1 i = 1 i
144 105 fveq2i -1 i = i
145 neg1rr 1
146 25 cjrebi 1 1 = 1
147 145 146 mpbi 1 = 1
148 cji i = i
149 147 148 oveq12i 1 i = -1 i
150 ax-1cn 1
151 150 10 mul2negi -1 i = 1 i
152 10 mulid2i 1 i = i
153 149 151 152 3eqtri 1 i = i
154 143 144 153 3eqtr3i i = i
155 1 4 dipcj U NrmCVec B X A X B P A = A P B
156 9 7 6 155 mp3an B P A = A P B
157 154 156 oveq12i i B P A = i A P B
158 142 157 eqtri i B P A = i A P B
159 139 141 158 3eqtr3i i S A P B = i A P B