Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|
2 |
|
ip1i.2 |
|
3 |
|
ip1i.4 |
|
4 |
|
ip1i.7 |
|
5 |
|
ip1i.9 |
|
6 |
|
ipasslem11.a |
|
7 |
|
ipasslem11.b |
|
8 |
|
cnre |
|
9 |
|
ax-icn |
|
10 |
|
recn |
|
11 |
|
mulcom |
|
12 |
9 10 11
|
sylancr |
|
13 |
12
|
adantl |
|
14 |
13
|
oveq2d |
|
15 |
14
|
eqeq2d |
|
16 |
|
recn |
|
17 |
5
|
phnvi |
|
18 |
1 3
|
nvscl |
|
19 |
17 6 18
|
mp3an13 |
|
20 |
16 19
|
syl |
|
21 |
|
mulcl |
|
22 |
10 9 21
|
sylancl |
|
23 |
1 3
|
nvscl |
|
24 |
17 6 23
|
mp3an13 |
|
25 |
22 24
|
syl |
|
26 |
1 2 3 4 5
|
ipdiri |
|
27 |
7 26
|
mp3an3 |
|
28 |
20 25 27
|
syl2an |
|
29 |
1 2 3 4 5 6 7
|
ipasslem9 |
|
30 |
1 3
|
nvscl |
|
31 |
17 9 6 30
|
mp3an |
|
32 |
1 2 3 4 5 31 7
|
ipasslem9 |
|
33 |
1 3
|
nvsass |
|
34 |
17 33
|
mpan |
|
35 |
9 6 34
|
mp3an23 |
|
36 |
10 35
|
syl |
|
37 |
36
|
oveq1d |
|
38 |
1 4
|
dipcl |
|
39 |
17 6 7 38
|
mp3an |
|
40 |
|
mulass |
|
41 |
9 39 40
|
mp3an23 |
|
42 |
10 41
|
syl |
|
43 |
|
eqid |
|
44 |
1 2 3 4 5 6 7 43
|
ipasslem10 |
|
45 |
44
|
oveq2i |
|
46 |
42 45
|
eqtr4di |
|
47 |
32 37 46
|
3eqtr4d |
|
48 |
29 47
|
oveqan12d |
|
49 |
28 48
|
eqtrd |
|
50 |
1 2 3
|
nvdir |
|
51 |
17 50
|
mpan |
|
52 |
6 51
|
mp3an3 |
|
53 |
16 22 52
|
syl2an |
|
54 |
53
|
oveq1d |
|
55 |
|
adddir |
|
56 |
39 55
|
mp3an3 |
|
57 |
16 22 56
|
syl2an |
|
58 |
49 54 57
|
3eqtr4d |
|
59 |
|
oveq1 |
|
60 |
59
|
oveq1d |
|
61 |
|
oveq1 |
|
62 |
60 61
|
eqeq12d |
|
63 |
58 62
|
syl5ibrcom |
|
64 |
15 63
|
sylbid |
|
65 |
64
|
rexlimivv |
|
66 |
8 65
|
syl |
|