Metamath Proof Explorer


Theorem ipasslem3

Description: Lemma for ipassi . Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipasslem1.b BX
Assertion ipasslem3 NAXNSAPB=NAPB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipasslem1.b BX
7 elznn0nn NN0NN
8 1 2 3 4 5 6 ipasslem1 N0AXNSAPB=NAPB
9 nnnn0 NN0
10 1 2 3 4 5 6 ipasslem2 N0AX- NSAPB=- NAPB
11 9 10 sylan NAX- NSAPB=- NAPB
12 11 adantll NNAX- NSAPB=- NAPB
13 recn NN
14 13 negnegd N- N=N
15 14 oveq1d N- NSA=NSA
16 15 oveq1d N- NSAPB=NSAPB
17 16 ad2antrr NNAX- NSAPB=NSAPB
18 14 oveq1d N- NAPB=NAPB
19 18 ad2antrr NNAX- NAPB=NAPB
20 12 17 19 3eqtr3d NNAXNSAPB=NAPB
21 8 20 jaoian N0NNAXNSAPB=NAPB
22 7 21 sylanb NAXNSAPB=NAPB