Description: Lemma for ipassi . Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ip1i.1 | |
|
ip1i.2 | |
||
ip1i.4 | |
||
ip1i.7 | |
||
ip1i.9 | |
||
ipasslem1.b | |
||
Assertion | ipasslem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.1 | |
|
2 | ip1i.2 | |
|
3 | ip1i.4 | |
|
4 | ip1i.7 | |
|
5 | ip1i.9 | |
|
6 | ipasslem1.b | |
|
7 | elznn0nn | |
|
8 | 1 2 3 4 5 6 | ipasslem1 | |
9 | nnnn0 | |
|
10 | 1 2 3 4 5 6 | ipasslem2 | |
11 | 9 10 | sylan | |
12 | 11 | adantll | |
13 | recn | |
|
14 | 13 | negnegd | |
15 | 14 | oveq1d | |
16 | 15 | oveq1d | |
17 | 16 | ad2antrr | |
18 | 14 | oveq1d | |
19 | 18 | ad2antrr | |
20 | 12 17 19 | 3eqtr3d | |
21 | 8 20 | jaoian | |
22 | 7 21 | sylanb | |