Metamath Proof Explorer


Theorem ipasslem4

Description: Lemma for ipassi . Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ipasslem1.b B X
Assertion ipasslem4 N A X 1 N S A P B = 1 N A P B

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ipasslem1.b B X
7 nnrecre N 1 N
8 7 recnd N 1 N
9 5 phnvi U NrmCVec
10 1 3 nvscl U NrmCVec 1 N A X 1 N S A X
11 9 10 mp3an1 1 N A X 1 N S A X
12 8 11 sylan N A X 1 N S A X
13 1 4 dipcl U NrmCVec 1 N S A X B X 1 N S A P B
14 9 6 13 mp3an13 1 N S A X 1 N S A P B
15 12 14 syl N A X 1 N S A P B
16 1 4 dipcl U NrmCVec A X B X A P B
17 9 6 16 mp3an13 A X A P B
18 mulcl 1 N A P B 1 N A P B
19 8 17 18 syl2an N A X 1 N A P B
20 nncn N N
21 20 adantr N A X N
22 nnne0 N N 0
23 22 adantr N A X N 0
24 20 22 recidd N N 1 N = 1
25 24 oveq1d N N 1 N A P B = 1 A P B
26 17 mulid2d A X 1 A P B = A P B
27 25 26 sylan9eq N A X N 1 N A P B = A P B
28 24 oveq1d N N 1 N S A = 1 S A
29 1 3 nvsid U NrmCVec A X 1 S A = A
30 9 29 mpan A X 1 S A = A
31 28 30 sylan9eq N A X N 1 N S A = A
32 8 adantr N A X 1 N
33 simpr N A X A X
34 1 3 nvsass U NrmCVec N 1 N A X N 1 N S A = N S 1 N S A
35 9 34 mpan N 1 N A X N 1 N S A = N S 1 N S A
36 21 32 33 35 syl3anc N A X N 1 N S A = N S 1 N S A
37 31 36 eqtr3d N A X A = N S 1 N S A
38 37 oveq1d N A X A P B = N S 1 N S A P B
39 nnnn0 N N 0
40 39 adantr N A X N 0
41 1 2 3 4 5 6 ipasslem1 N 0 1 N S A X N S 1 N S A P B = N 1 N S A P B
42 40 12 41 syl2anc N A X N S 1 N S A P B = N 1 N S A P B
43 27 38 42 3eqtrd N A X N 1 N A P B = N 1 N S A P B
44 17 adantl N A X A P B
45 21 32 44 mulassd N A X N 1 N A P B = N 1 N A P B
46 43 45 eqtr3d N A X N 1 N S A P B = N 1 N A P B
47 15 19 21 23 46 mulcanad N A X 1 N S A P B = 1 N A P B