Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
|
2 |
|
ip1i.2 |
|
3 |
|
ip1i.4 |
|
4 |
|
ip1i.7 |
|
5 |
|
ip1i.9 |
|
6 |
|
ipasslem1.b |
|
7 |
|
nnrecre |
|
8 |
7
|
recnd |
|
9 |
5
|
phnvi |
|
10 |
1 3
|
nvscl |
|
11 |
9 10
|
mp3an1 |
|
12 |
8 11
|
sylan |
|
13 |
1 4
|
dipcl |
|
14 |
9 6 13
|
mp3an13 |
|
15 |
12 14
|
syl |
|
16 |
1 4
|
dipcl |
|
17 |
9 6 16
|
mp3an13 |
|
18 |
|
mulcl |
|
19 |
8 17 18
|
syl2an |
|
20 |
|
nncn |
|
21 |
20
|
adantr |
|
22 |
|
nnne0 |
|
23 |
22
|
adantr |
|
24 |
20 22
|
recidd |
|
25 |
24
|
oveq1d |
|
26 |
17
|
mulid2d |
|
27 |
25 26
|
sylan9eq |
|
28 |
24
|
oveq1d |
|
29 |
1 3
|
nvsid |
|
30 |
9 29
|
mpan |
|
31 |
28 30
|
sylan9eq |
|
32 |
8
|
adantr |
|
33 |
|
simpr |
|
34 |
1 3
|
nvsass |
|
35 |
9 34
|
mpan |
|
36 |
21 32 33 35
|
syl3anc |
|
37 |
31 36
|
eqtr3d |
|
38 |
37
|
oveq1d |
|
39 |
|
nnnn0 |
|
40 |
39
|
adantr |
|
41 |
1 2 3 4 5 6
|
ipasslem1 |
|
42 |
40 12 41
|
syl2anc |
|
43 |
27 38 42
|
3eqtrd |
|
44 |
17
|
adantl |
|
45 |
21 32 44
|
mulassd |
|
46 |
43 45
|
eqtr3d |
|
47 |
15 19 21 23 46
|
mulcanad |
|