Metamath Proof Explorer


Theorem ipasslem5

Description: Lemma for ipassi . Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ipasslem1.b B X
Assertion ipasslem5 C A X C S A P B = C A P B

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ipasslem1.b B X
7 elq C j k C = j k
8 zcn j j
9 nnrecre k 1 k
10 9 recnd k 1 k
11 5 phnvi U NrmCVec
12 1 4 dipcl U NrmCVec A X B X A P B
13 11 6 12 mp3an13 A X A P B
14 mulass j 1 k A P B j 1 k A P B = j 1 k A P B
15 8 10 13 14 syl3an j k A X j 1 k A P B = j 1 k A P B
16 8 adantr j k j
17 nncn k k
18 17 adantl j k k
19 nnne0 k k 0
20 19 adantl j k k 0
21 16 18 20 divrecd j k j k = j 1 k
22 21 3adant3 j k A X j k = j 1 k
23 22 oveq1d j k A X j k A P B = j 1 k A P B
24 22 oveq1d j k A X j k S A = j 1 k S A
25 id A X A X
26 1 3 nvsass U NrmCVec j 1 k A X j 1 k S A = j S 1 k S A
27 11 26 mpan j 1 k A X j 1 k S A = j S 1 k S A
28 8 10 25 27 syl3an j k A X j 1 k S A = j S 1 k S A
29 24 28 eqtrd j k A X j k S A = j S 1 k S A
30 29 oveq1d j k A X j k S A P B = j S 1 k S A P B
31 1 3 nvscl U NrmCVec 1 k A X 1 k S A X
32 11 31 mp3an1 1 k A X 1 k S A X
33 10 32 sylan k A X 1 k S A X
34 1 2 3 4 5 6 ipasslem3 j 1 k S A X j S 1 k S A P B = j 1 k S A P B
35 33 34 sylan2 j k A X j S 1 k S A P B = j 1 k S A P B
36 35 3impb j k A X j S 1 k S A P B = j 1 k S A P B
37 1 2 3 4 5 6 ipasslem4 k A X 1 k S A P B = 1 k A P B
38 37 3adant1 j k A X 1 k S A P B = 1 k A P B
39 38 oveq2d j k A X j 1 k S A P B = j 1 k A P B
40 30 36 39 3eqtrd j k A X j k S A P B = j 1 k A P B
41 15 23 40 3eqtr4rd j k A X j k S A P B = j k A P B
42 oveq1 C = j k C S A = j k S A
43 42 oveq1d C = j k C S A P B = j k S A P B
44 oveq1 C = j k C A P B = j k A P B
45 43 44 eqeq12d C = j k C S A P B = C A P B j k S A P B = j k A P B
46 41 45 syl5ibrcom j k A X C = j k C S A P B = C A P B
47 46 3expia j k A X C = j k C S A P B = C A P B
48 47 com23 j k C = j k A X C S A P B = C A P B
49 48 rexlimivv j k C = j k A X C S A P B = C A P B
50 7 49 sylbi C A X C S A P B = C A P B
51 50 imp C A X C S A P B = C A P B