Metamath Proof Explorer


Theorem ipasslem8

Description: Lemma for ipassi . By ipasslem5 , F is 0 for all QQ ; since it is continuous and QQ is dense in RR by qdensere2 , we conclude F is 0 for all RR . (Contributed by NM, 24-Aug-2007) (Revised by Mario Carneiro, 6-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ipasslem7.a A X
ipasslem7.b B X
ipasslem7.f F = w w S A P B w A P B
Assertion ipasslem8 F : 0

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ipasslem7.a A X
7 ipasslem7.b B X
8 ipasslem7.f F = w w S A P B w A P B
9 0cn 0
10 qre x x
11 oveq1 w = x w S A = x S A
12 11 oveq1d w = x w S A P B = x S A P B
13 oveq1 w = x w A P B = x A P B
14 12 13 oveq12d w = x w S A P B w A P B = x S A P B x A P B
15 ovex x S A P B x A P B V
16 14 8 15 fvmpt x F x = x S A P B x A P B
17 10 16 syl x F x = x S A P B x A P B
18 qcn x x
19 5 phnvi U NrmCVec
20 1 3 nvscl U NrmCVec x A X x S A X
21 19 20 mp3an1 x A X x S A X
22 18 21 sylan x A X x S A X
23 1 4 dipcl U NrmCVec x S A X B X x S A P B
24 19 7 23 mp3an13 x S A X x S A P B
25 22 24 syl x A X x S A P B
26 1 2 3 4 5 7 ipasslem5 x A X x S A P B = x A P B
27 25 26 subeq0bd x A X x S A P B x A P B = 0
28 6 27 mpan2 x x S A P B x A P B = 0
29 17 28 eqtrd x F x = 0
30 29 rgen x F x = 0
31 8 funmpt2 Fun F
32 qssre
33 ovex w S A P B w A P B V
34 33 8 dmmpti dom F =
35 32 34 sseqtrri dom F
36 funconstss Fun F dom F x F x = 0 F -1 0
37 31 35 36 mp2an x F x = 0 F -1 0
38 30 37 mpbi F -1 0
39 qdensere cls topGen ran . =
40 eqid TopOpen fld = TopOpen fld
41 40 cnfldhaus TopOpen fld Haus
42 haust1 TopOpen fld Haus TopOpen fld Fre
43 41 42 ax-mp TopOpen fld Fre
44 eqid topGen ran . = topGen ran .
45 1 2 3 4 5 6 7 8 44 40 ipasslem7 F topGen ran . Cn TopOpen fld
46 uniretop = topGen ran .
47 40 cnfldtopon TopOpen fld TopOn
48 47 toponunii = TopOpen fld
49 46 48 dnsconst TopOpen fld Fre F topGen ran . Cn TopOpen fld 0 F -1 0 cls topGen ran . = F : 0
50 43 45 49 mpanl12 0 F -1 0 cls topGen ran . = F : 0
51 9 38 39 50 mp3an F : 0