Metamath Proof Explorer


Theorem ipasslem9

Description: Lemma for ipassi . Conclude from ipasslem8 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ipasslem9.a A X
ipasslem9.b B X
Assertion ipasslem9 C C S A P B = C A P B

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ipasslem9.a A X
7 ipasslem9.b B X
8 oveq1 w = C w S A = C S A
9 8 oveq1d w = C w S A P B = C S A P B
10 oveq1 w = C w A P B = C A P B
11 9 10 oveq12d w = C w S A P B w A P B = C S A P B C A P B
12 eqid w w S A P B w A P B = w w S A P B w A P B
13 ovex C S A P B C A P B V
14 11 12 13 fvmpt C w w S A P B w A P B C = C S A P B C A P B
15 1 2 3 4 5 6 7 12 ipasslem8 w w S A P B w A P B : 0
16 fvconst w w S A P B w A P B : 0 C w w S A P B w A P B C = 0
17 15 16 mpan C w w S A P B w A P B C = 0
18 14 17 eqtr3d C C S A P B C A P B = 0
19 recn C C
20 5 phnvi U NrmCVec
21 1 3 nvscl U NrmCVec C A X C S A X
22 20 6 21 mp3an13 C C S A X
23 1 4 dipcl U NrmCVec C S A X B X C S A P B
24 20 7 23 mp3an13 C S A X C S A P B
25 22 24 syl C C S A P B
26 1 4 dipcl U NrmCVec A X B X A P B
27 20 6 7 26 mp3an A P B
28 mulcl C A P B C A P B
29 27 28 mpan2 C C A P B
30 25 29 subeq0ad C C S A P B C A P B = 0 C S A P B = C A P B
31 19 30 syl C C S A P B C A P B = 0 C S A P B = C A P B
32 18 31 mpbid C C S A P B = C A P B