Metamath Proof Explorer


Theorem ipblnfi

Description: A function F generated by varying the first argument of an inner product (with its second argument a fixed vector A ) is a bounded linear functional, i.e. a bounded linear operator from the vector space to CC . (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ipblnfi.1 X = BaseSet U
ipblnfi.7 P = 𝑖OLD U
ipblnfi.9 U CPreHil OLD
ipblnfi.c C = + × abs
ipblnfi.l B = U BLnOp C
ipblnfi.f F = x X x P A
Assertion ipblnfi A X F B

Proof

Step Hyp Ref Expression
1 ipblnfi.1 X = BaseSet U
2 ipblnfi.7 P = 𝑖OLD U
3 ipblnfi.9 U CPreHil OLD
4 ipblnfi.c C = + × abs
5 ipblnfi.l B = U BLnOp C
6 ipblnfi.f F = x X x P A
7 3 phnvi U NrmCVec
8 1 2 dipcl U NrmCVec x X A X x P A
9 7 8 mp3an1 x X A X x P A
10 9 ancoms A X x X x P A
11 10 6 fmptd A X F : X
12 eqid 𝑠OLD U = 𝑠OLD U
13 1 12 nvscl U NrmCVec y z X y 𝑠OLD U z X
14 7 13 mp3an1 y z X y 𝑠OLD U z X
15 14 ad2ant2lr A X y z X w X y 𝑠OLD U z X
16 simprr A X y z X w X w X
17 simpll A X y z X w X A X
18 eqid + v U = + v U
19 1 18 2 dipdir U CPreHil OLD y 𝑠OLD U z X w X A X y 𝑠OLD U z + v U w P A = y 𝑠OLD U z P A + w P A
20 3 19 mpan y 𝑠OLD U z X w X A X y 𝑠OLD U z + v U w P A = y 𝑠OLD U z P A + w P A
21 15 16 17 20 syl3anc A X y z X w X y 𝑠OLD U z + v U w P A = y 𝑠OLD U z P A + w P A
22 simplr A X y z X w X y
23 simprl A X y z X w X z X
24 1 18 12 2 3 ipassi y z X A X y 𝑠OLD U z P A = y z P A
25 22 23 17 24 syl3anc A X y z X w X y 𝑠OLD U z P A = y z P A
26 25 oveq1d A X y z X w X y 𝑠OLD U z P A + w P A = y z P A + w P A
27 21 26 eqtrd A X y z X w X y 𝑠OLD U z + v U w P A = y z P A + w P A
28 14 adantll A X y z X y 𝑠OLD U z X
29 1 18 nvgcl U NrmCVec y 𝑠OLD U z X w X y 𝑠OLD U z + v U w X
30 7 29 mp3an1 y 𝑠OLD U z X w X y 𝑠OLD U z + v U w X
31 28 30 sylan A X y z X w X y 𝑠OLD U z + v U w X
32 31 anasss A X y z X w X y 𝑠OLD U z + v U w X
33 oveq1 x = y 𝑠OLD U z + v U w x P A = y 𝑠OLD U z + v U w P A
34 ovex y 𝑠OLD U z + v U w P A V
35 33 6 34 fvmpt y 𝑠OLD U z + v U w X F y 𝑠OLD U z + v U w = y 𝑠OLD U z + v U w P A
36 32 35 syl A X y z X w X F y 𝑠OLD U z + v U w = y 𝑠OLD U z + v U w P A
37 oveq1 x = z x P A = z P A
38 ovex z P A V
39 37 6 38 fvmpt z X F z = z P A
40 39 ad2antrl A X y z X w X F z = z P A
41 40 oveq2d A X y z X w X y F z = y z P A
42 oveq1 x = w x P A = w P A
43 ovex w P A V
44 42 6 43 fvmpt w X F w = w P A
45 44 ad2antll A X y z X w X F w = w P A
46 41 45 oveq12d A X y z X w X y F z + F w = y z P A + w P A
47 27 36 46 3eqtr4d A X y z X w X F y 𝑠OLD U z + v U w = y F z + F w
48 47 ralrimivva A X y z X w X F y 𝑠OLD U z + v U w = y F z + F w
49 48 ralrimiva A X y z X w X F y 𝑠OLD U z + v U w = y F z + F w
50 4 cnnv C NrmCVec
51 4 cnnvba = BaseSet C
52 4 cnnvg + = + v C
53 4 cnnvs × = 𝑠OLD C
54 eqid U LnOp C = U LnOp C
55 1 51 18 52 12 53 54 islno U NrmCVec C NrmCVec F U LnOp C F : X y z X w X F y 𝑠OLD U z + v U w = y F z + F w
56 7 50 55 mp2an F U LnOp C F : X y z X w X F y 𝑠OLD U z + v U w = y F z + F w
57 11 49 56 sylanbrc A X F U LnOp C
58 eqid norm CV U = norm CV U
59 1 58 nvcl U NrmCVec A X norm CV U A
60 7 59 mpan A X norm CV U A
61 1 58 2 3 sii z X A X z P A norm CV U z norm CV U A
62 61 ancoms A X z X z P A norm CV U z norm CV U A
63 39 adantl A X z X F z = z P A
64 63 fveq2d A X z X F z = z P A
65 60 recnd A X norm CV U A
66 1 58 nvcl U NrmCVec z X norm CV U z
67 7 66 mpan z X norm CV U z
68 67 recnd z X norm CV U z
69 mulcom norm CV U A norm CV U z norm CV U A norm CV U z = norm CV U z norm CV U A
70 65 68 69 syl2an A X z X norm CV U A norm CV U z = norm CV U z norm CV U A
71 62 64 70 3brtr4d A X z X F z norm CV U A norm CV U z
72 71 ralrimiva A X z X F z norm CV U A norm CV U z
73 4 cnnvnm abs = norm CV C
74 1 58 73 54 5 7 50 blo3i F U LnOp C norm CV U A z X F z norm CV U A norm CV U z F B
75 57 60 72 74 syl3anc A X F B