Metamath Proof Explorer


Theorem ipcl

Description: Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipcl.f K = Base F
Assertion ipcl W PreHil A V B V A , ˙ B K

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipcl.f K = Base F
5 eqid x V x , ˙ B = x V x , ˙ B
6 1 2 3 5 phllmhm W PreHil B V x V x , ˙ B W LMHom ringLMod F
7 rlmbas Base F = Base ringLMod F
8 4 7 eqtri K = Base ringLMod F
9 3 8 lmhmf x V x , ˙ B W LMHom ringLMod F x V x , ˙ B : V K
10 6 9 syl W PreHil B V x V x , ˙ B : V K
11 5 fmpt x V x , ˙ B K x V x , ˙ B : V K
12 10 11 sylibr W PreHil B V x V x , ˙ B K
13 oveq1 x = A x , ˙ B = A , ˙ B
14 13 eleq1d x = A x , ˙ B K A , ˙ B K
15 14 rspccva x V x , ˙ B K A V A , ˙ B K
16 12 15 stoic3 W PreHil B V A V A , ˙ B K
17 16 3com23 W PreHil A V B V A , ˙ B K