Step |
Hyp |
Ref |
Expression |
1 |
|
ipcn.f |
|
2 |
|
ipcn.j |
|
3 |
|
ipcn.k |
|
4 |
|
cphphl |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
5 1 6 7
|
phlipf |
|
9 |
4 8
|
syl |
|
10 |
|
cphclm |
|
11 |
6 7
|
clmsscn |
|
12 |
10 11
|
syl |
|
13 |
9 12
|
fssd |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
simpll |
|
20 |
|
simplrl |
|
21 |
|
simplrr |
|
22 |
|
simpr |
|
23 |
5 14 15 16 17 18 19 20 21 22
|
ipcnlem1 |
|
24 |
23
|
ralrimiva |
|
25 |
|
simplrl |
|
26 |
|
simprl |
|
27 |
25 26
|
ovresd |
|
28 |
27
|
breq1d |
|
29 |
|
simplrr |
|
30 |
|
simprr |
|
31 |
29 30
|
ovresd |
|
32 |
31
|
breq1d |
|
33 |
28 32
|
anbi12d |
|
34 |
13
|
ad2antrr |
|
35 |
34 25 29
|
fovrnd |
|
36 |
34 26 30
|
fovrnd |
|
37 |
|
eqid |
|
38 |
37
|
cnmetdval |
|
39 |
35 36 38
|
syl2anc |
|
40 |
5 14 1
|
ipfval |
|
41 |
25 29 40
|
syl2anc |
|
42 |
5 14 1
|
ipfval |
|
43 |
42
|
adantl |
|
44 |
41 43
|
oveq12d |
|
45 |
44
|
fveq2d |
|
46 |
39 45
|
eqtrd |
|
47 |
46
|
breq1d |
|
48 |
33 47
|
imbi12d |
|
49 |
48
|
2ralbidva |
|
50 |
49
|
rexbidv |
|
51 |
50
|
ralbidv |
|
52 |
24 51
|
mpbird |
|
53 |
52
|
ralrimivva |
|
54 |
|
cphngp |
|
55 |
|
ngpms |
|
56 |
54 55
|
syl |
|
57 |
|
msxms |
|
58 |
56 57
|
syl |
|
59 |
|
eqid |
|
60 |
5 59
|
xmsxmet |
|
61 |
58 60
|
syl |
|
62 |
|
cnxmet |
|
63 |
62
|
a1i |
|
64 |
|
eqid |
|
65 |
3
|
cnfldtopn |
|
66 |
64 64 65
|
txmetcn |
|
67 |
61 61 63 66
|
syl3anc |
|
68 |
13 53 67
|
mpbir2and |
|
69 |
2 5 59
|
mstopn |
|
70 |
56 69
|
syl |
|
71 |
70 70
|
oveq12d |
|
72 |
71
|
oveq1d |
|
73 |
68 72
|
eleqtrrd |
|