Metamath Proof Explorer


Theorem ipcn

Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ipcn.f , ˙ = if W
ipcn.j J = TopOpen W
ipcn.k K = TopOpen fld
Assertion ipcn W CPreHil , ˙ J × t J Cn K

Proof

Step Hyp Ref Expression
1 ipcn.f , ˙ = if W
2 ipcn.j J = TopOpen W
3 ipcn.k K = TopOpen fld
4 cphphl W CPreHil W PreHil
5 eqid Base W = Base W
6 eqid Scalar W = Scalar W
7 eqid Base Scalar W = Base Scalar W
8 5 1 6 7 phlipf W PreHil , ˙ : Base W × Base W Base Scalar W
9 4 8 syl W CPreHil , ˙ : Base W × Base W Base Scalar W
10 cphclm W CPreHil W CMod
11 6 7 clmsscn W CMod Base Scalar W
12 10 11 syl W CPreHil Base Scalar W
13 9 12 fssd W CPreHil , ˙ : Base W × Base W
14 eqid 𝑖 W = 𝑖 W
15 eqid dist W = dist W
16 eqid norm W = norm W
17 eqid r 2 norm W x + 1 = r 2 norm W x + 1
18 eqid r 2 norm W y + r 2 norm W x + 1 = r 2 norm W y + r 2 norm W x + 1
19 simpll W CPreHil x Base W y Base W r + W CPreHil
20 simplrl W CPreHil x Base W y Base W r + x Base W
21 simplrr W CPreHil x Base W y Base W r + y Base W
22 simpr W CPreHil x Base W y Base W r + r +
23 5 14 15 16 17 18 19 20 21 22 ipcnlem1 W CPreHil x Base W y Base W r + s + z Base W w Base W x dist W z < s y dist W w < s x 𝑖 W y z 𝑖 W w < r
24 23 ralrimiva W CPreHil x Base W y Base W r + s + z Base W w Base W x dist W z < s y dist W w < s x 𝑖 W y z 𝑖 W w < r
25 simplrl W CPreHil x Base W y Base W z Base W w Base W x Base W
26 simprl W CPreHil x Base W y Base W z Base W w Base W z Base W
27 25 26 ovresd W CPreHil x Base W y Base W z Base W w Base W x dist W Base W × Base W z = x dist W z
28 27 breq1d W CPreHil x Base W y Base W z Base W w Base W x dist W Base W × Base W z < s x dist W z < s
29 simplrr W CPreHil x Base W y Base W z Base W w Base W y Base W
30 simprr W CPreHil x Base W y Base W z Base W w Base W w Base W
31 29 30 ovresd W CPreHil x Base W y Base W z Base W w Base W y dist W Base W × Base W w = y dist W w
32 31 breq1d W CPreHil x Base W y Base W z Base W w Base W y dist W Base W × Base W w < s y dist W w < s
33 28 32 anbi12d W CPreHil x Base W y Base W z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x dist W z < s y dist W w < s
34 13 ad2antrr W CPreHil x Base W y Base W z Base W w Base W , ˙ : Base W × Base W
35 34 25 29 fovrnd W CPreHil x Base W y Base W z Base W w Base W x , ˙ y
36 34 26 30 fovrnd W CPreHil x Base W y Base W z Base W w Base W z , ˙ w
37 eqid abs = abs
38 37 cnmetdval x , ˙ y z , ˙ w x , ˙ y abs z , ˙ w = x , ˙ y z , ˙ w
39 35 36 38 syl2anc W CPreHil x Base W y Base W z Base W w Base W x , ˙ y abs z , ˙ w = x , ˙ y z , ˙ w
40 5 14 1 ipfval x Base W y Base W x , ˙ y = x 𝑖 W y
41 25 29 40 syl2anc W CPreHil x Base W y Base W z Base W w Base W x , ˙ y = x 𝑖 W y
42 5 14 1 ipfval z Base W w Base W z , ˙ w = z 𝑖 W w
43 42 adantl W CPreHil x Base W y Base W z Base W w Base W z , ˙ w = z 𝑖 W w
44 41 43 oveq12d W CPreHil x Base W y Base W z Base W w Base W x , ˙ y z , ˙ w = x 𝑖 W y z 𝑖 W w
45 44 fveq2d W CPreHil x Base W y Base W z Base W w Base W x , ˙ y z , ˙ w = x 𝑖 W y z 𝑖 W w
46 39 45 eqtrd W CPreHil x Base W y Base W z Base W w Base W x , ˙ y abs z , ˙ w = x 𝑖 W y z 𝑖 W w
47 46 breq1d W CPreHil x Base W y Base W z Base W w Base W x , ˙ y abs z , ˙ w < r x 𝑖 W y z 𝑖 W w < r
48 33 47 imbi12d W CPreHil x Base W y Base W z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x , ˙ y abs z , ˙ w < r x dist W z < s y dist W w < s x 𝑖 W y z 𝑖 W w < r
49 48 2ralbidva W CPreHil x Base W y Base W z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x , ˙ y abs z , ˙ w < r z Base W w Base W x dist W z < s y dist W w < s x 𝑖 W y z 𝑖 W w < r
50 49 rexbidv W CPreHil x Base W y Base W s + z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x , ˙ y abs z , ˙ w < r s + z Base W w Base W x dist W z < s y dist W w < s x 𝑖 W y z 𝑖 W w < r
51 50 ralbidv W CPreHil x Base W y Base W r + s + z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x , ˙ y abs z , ˙ w < r r + s + z Base W w Base W x dist W z < s y dist W w < s x 𝑖 W y z 𝑖 W w < r
52 24 51 mpbird W CPreHil x Base W y Base W r + s + z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x , ˙ y abs z , ˙ w < r
53 52 ralrimivva W CPreHil x Base W y Base W r + s + z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x , ˙ y abs z , ˙ w < r
54 cphngp W CPreHil W NrmGrp
55 ngpms W NrmGrp W MetSp
56 54 55 syl W CPreHil W MetSp
57 msxms W MetSp W ∞MetSp
58 56 57 syl W CPreHil W ∞MetSp
59 eqid dist W Base W × Base W = dist W Base W × Base W
60 5 59 xmsxmet W ∞MetSp dist W Base W × Base W ∞Met Base W
61 58 60 syl W CPreHil dist W Base W × Base W ∞Met Base W
62 cnxmet abs ∞Met
63 62 a1i W CPreHil abs ∞Met
64 eqid MetOpen dist W Base W × Base W = MetOpen dist W Base W × Base W
65 3 cnfldtopn K = MetOpen abs
66 64 64 65 txmetcn dist W Base W × Base W ∞Met Base W dist W Base W × Base W ∞Met Base W abs ∞Met , ˙ MetOpen dist W Base W × Base W × t MetOpen dist W Base W × Base W Cn K , ˙ : Base W × Base W x Base W y Base W r + s + z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x , ˙ y abs z , ˙ w < r
67 61 61 63 66 syl3anc W CPreHil , ˙ MetOpen dist W Base W × Base W × t MetOpen dist W Base W × Base W Cn K , ˙ : Base W × Base W x Base W y Base W r + s + z Base W w Base W x dist W Base W × Base W z < s y dist W Base W × Base W w < s x , ˙ y abs z , ˙ w < r
68 13 53 67 mpbir2and W CPreHil , ˙ MetOpen dist W Base W × Base W × t MetOpen dist W Base W × Base W Cn K
69 2 5 59 mstopn W MetSp J = MetOpen dist W Base W × Base W
70 56 69 syl W CPreHil J = MetOpen dist W Base W × Base W
71 70 70 oveq12d W CPreHil J × t J = MetOpen dist W Base W × Base W × t MetOpen dist W Base W × Base W
72 71 oveq1d W CPreHil J × t J Cn K = MetOpen dist W Base W × Base W × t MetOpen dist W Base W × Base W Cn K
73 68 72 eleqtrrd W CPreHil , ˙ J × t J Cn K