| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipcn.f |
|
| 2 |
|
ipcn.j |
|
| 3 |
|
ipcn.k |
|
| 4 |
|
cphphl |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
5 1 6 7
|
phlipf |
|
| 9 |
4 8
|
syl |
|
| 10 |
|
cphclm |
|
| 11 |
6 7
|
clmsscn |
|
| 12 |
10 11
|
syl |
|
| 13 |
9 12
|
fssd |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
simpll |
|
| 20 |
|
simplrl |
|
| 21 |
|
simplrr |
|
| 22 |
|
simpr |
|
| 23 |
5 14 15 16 17 18 19 20 21 22
|
ipcnlem1 |
|
| 24 |
23
|
ralrimiva |
|
| 25 |
|
simplrl |
|
| 26 |
|
simprl |
|
| 27 |
25 26
|
ovresd |
|
| 28 |
27
|
breq1d |
|
| 29 |
|
simplrr |
|
| 30 |
|
simprr |
|
| 31 |
29 30
|
ovresd |
|
| 32 |
31
|
breq1d |
|
| 33 |
28 32
|
anbi12d |
|
| 34 |
13
|
ad2antrr |
|
| 35 |
34 25 29
|
fovcdmd |
|
| 36 |
34 26 30
|
fovcdmd |
|
| 37 |
|
eqid |
|
| 38 |
37
|
cnmetdval |
|
| 39 |
35 36 38
|
syl2anc |
|
| 40 |
5 14 1
|
ipfval |
|
| 41 |
25 29 40
|
syl2anc |
|
| 42 |
5 14 1
|
ipfval |
|
| 43 |
42
|
adantl |
|
| 44 |
41 43
|
oveq12d |
|
| 45 |
44
|
fveq2d |
|
| 46 |
39 45
|
eqtrd |
|
| 47 |
46
|
breq1d |
|
| 48 |
33 47
|
imbi12d |
|
| 49 |
48
|
2ralbidva |
|
| 50 |
49
|
rexbidv |
|
| 51 |
50
|
ralbidv |
|
| 52 |
24 51
|
mpbird |
|
| 53 |
52
|
ralrimivva |
|
| 54 |
|
cphngp |
|
| 55 |
|
ngpms |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
msxms |
|
| 58 |
56 57
|
syl |
|
| 59 |
|
eqid |
|
| 60 |
5 59
|
xmsxmet |
|
| 61 |
58 60
|
syl |
|
| 62 |
|
cnxmet |
|
| 63 |
62
|
a1i |
|
| 64 |
|
eqid |
|
| 65 |
3
|
cnfldtopn |
|
| 66 |
64 64 65
|
txmetcn |
|
| 67 |
61 61 63 66
|
syl3anc |
|
| 68 |
13 53 67
|
mpbir2and |
|
| 69 |
2 5 59
|
mstopn |
|
| 70 |
56 69
|
syl |
|
| 71 |
70 70
|
oveq12d |
|
| 72 |
71
|
oveq1d |
|
| 73 |
68 72
|
eleqtrrd |
|