Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
ipcni
Next ⟩
cjdivi
Metamath Proof Explorer
Ascii
Unicode
Theorem
ipcni
Description:
Standard inner product on complex numbers.
(Contributed by
NM
, 2-Oct-1999)
Ref
Expression
Hypotheses
recl.1
⊢
A
∈
ℂ
readdi.2
⊢
B
∈
ℂ
Assertion
ipcni
⊢
ℜ
⁡
A
⁢
B
‾
=
ℜ
⁡
A
⁢
ℜ
⁡
B
+
ℑ
⁡
A
⁢
ℑ
⁡
B
Proof
Step
Hyp
Ref
Expression
1
recl.1
⊢
A
∈
ℂ
2
readdi.2
⊢
B
∈
ℂ
3
ipcnval
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℜ
⁡
A
⁢
B
‾
=
ℜ
⁡
A
⁢
ℜ
⁡
B
+
ℑ
⁡
A
⁢
ℑ
⁡
B
4
1
2
3
mp2an
⊢
ℜ
⁡
A
⁢
B
‾
=
ℜ
⁡
A
⁢
ℜ
⁡
B
+
ℑ
⁡
A
⁢
ℑ
⁡
B