| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipcn.v |
|
| 2 |
|
ipcn.h |
|
| 3 |
|
ipcn.d |
|
| 4 |
|
ipcn.n |
|
| 5 |
|
ipcn.t |
|
| 6 |
|
ipcn.u |
|
| 7 |
|
ipcn.w |
|
| 8 |
|
ipcn.a |
|
| 9 |
|
ipcn.b |
|
| 10 |
|
ipcn.r |
|
| 11 |
10
|
rphalfcld |
|
| 12 |
|
cphnlm |
|
| 13 |
7 12
|
syl |
|
| 14 |
|
nlmngp |
|
| 15 |
13 14
|
syl |
|
| 16 |
1 4
|
nmcl |
|
| 17 |
15 8 16
|
syl2anc |
|
| 18 |
1 4
|
nmge0 |
|
| 19 |
15 8 18
|
syl2anc |
|
| 20 |
17 19
|
ge0p1rpd |
|
| 21 |
11 20
|
rpdivcld |
|
| 22 |
5 21
|
eqeltrid |
|
| 23 |
1 4
|
nmcl |
|
| 24 |
15 9 23
|
syl2anc |
|
| 25 |
22
|
rpred |
|
| 26 |
24 25
|
readdcld |
|
| 27 |
|
0red |
|
| 28 |
1 4
|
nmge0 |
|
| 29 |
15 9 28
|
syl2anc |
|
| 30 |
24 22
|
ltaddrpd |
|
| 31 |
27 24 26 29 30
|
lelttrd |
|
| 32 |
26 31
|
elrpd |
|
| 33 |
11 32
|
rpdivcld |
|
| 34 |
6 33
|
eqeltrid |
|
| 35 |
22 34
|
ifcld |
|
| 36 |
7
|
adantr |
|
| 37 |
8
|
adantr |
|
| 38 |
9
|
adantr |
|
| 39 |
10
|
adantr |
|
| 40 |
|
simprll |
|
| 41 |
|
simprlr |
|
| 42 |
15
|
adantr |
|
| 43 |
|
ngpms |
|
| 44 |
42 43
|
syl |
|
| 45 |
1 3
|
mscl |
|
| 46 |
44 37 40 45
|
syl3anc |
|
| 47 |
35
|
adantr |
|
| 48 |
47
|
rpred |
|
| 49 |
34
|
rpred |
|
| 50 |
49
|
adantr |
|
| 51 |
|
simprrl |
|
| 52 |
25
|
adantr |
|
| 53 |
|
min2 |
|
| 54 |
52 50 53
|
syl2anc |
|
| 55 |
46 48 50 51 54
|
ltletrd |
|
| 56 |
15 43
|
syl |
|
| 57 |
56
|
adantr |
|
| 58 |
1 3
|
mscl |
|
| 59 |
57 38 41 58
|
syl3anc |
|
| 60 |
|
simprrr |
|
| 61 |
|
min1 |
|
| 62 |
52 50 61
|
syl2anc |
|
| 63 |
59 48 52 60 62
|
ltletrd |
|
| 64 |
1 2 3 4 5 6 36 37 38 39 40 41 55 63
|
ipcnlem2 |
|
| 65 |
64
|
expr |
|
| 66 |
65
|
ralrimivva |
|
| 67 |
|
breq2 |
|
| 68 |
|
breq2 |
|
| 69 |
67 68
|
anbi12d |
|
| 70 |
69
|
imbi1d |
|
| 71 |
70
|
2ralbidv |
|
| 72 |
71
|
rspcev |
|
| 73 |
35 66 72
|
syl2anc |
|