Step |
Hyp |
Ref |
Expression |
1 |
|
ipcn.v |
|
2 |
|
ipcn.h |
|
3 |
|
ipcn.d |
|
4 |
|
ipcn.n |
|
5 |
|
ipcn.t |
|
6 |
|
ipcn.u |
|
7 |
|
ipcn.w |
|
8 |
|
ipcn.a |
|
9 |
|
ipcn.b |
|
10 |
|
ipcn.r |
|
11 |
10
|
rphalfcld |
|
12 |
|
cphnlm |
|
13 |
7 12
|
syl |
|
14 |
|
nlmngp |
|
15 |
13 14
|
syl |
|
16 |
1 4
|
nmcl |
|
17 |
15 8 16
|
syl2anc |
|
18 |
1 4
|
nmge0 |
|
19 |
15 8 18
|
syl2anc |
|
20 |
17 19
|
ge0p1rpd |
|
21 |
11 20
|
rpdivcld |
|
22 |
5 21
|
eqeltrid |
|
23 |
1 4
|
nmcl |
|
24 |
15 9 23
|
syl2anc |
|
25 |
22
|
rpred |
|
26 |
24 25
|
readdcld |
|
27 |
|
0red |
|
28 |
1 4
|
nmge0 |
|
29 |
15 9 28
|
syl2anc |
|
30 |
24 22
|
ltaddrpd |
|
31 |
27 24 26 29 30
|
lelttrd |
|
32 |
26 31
|
elrpd |
|
33 |
11 32
|
rpdivcld |
|
34 |
6 33
|
eqeltrid |
|
35 |
22 34
|
ifcld |
|
36 |
7
|
adantr |
|
37 |
8
|
adantr |
|
38 |
9
|
adantr |
|
39 |
10
|
adantr |
|
40 |
|
simprll |
|
41 |
|
simprlr |
|
42 |
15
|
adantr |
|
43 |
|
ngpms |
|
44 |
42 43
|
syl |
|
45 |
1 3
|
mscl |
|
46 |
44 37 40 45
|
syl3anc |
|
47 |
35
|
adantr |
|
48 |
47
|
rpred |
|
49 |
34
|
rpred |
|
50 |
49
|
adantr |
|
51 |
|
simprrl |
|
52 |
25
|
adantr |
|
53 |
|
min2 |
|
54 |
52 50 53
|
syl2anc |
|
55 |
46 48 50 51 54
|
ltletrd |
|
56 |
15 43
|
syl |
|
57 |
56
|
adantr |
|
58 |
1 3
|
mscl |
|
59 |
57 38 41 58
|
syl3anc |
|
60 |
|
simprrr |
|
61 |
|
min1 |
|
62 |
52 50 61
|
syl2anc |
|
63 |
59 48 52 60 62
|
ltletrd |
|
64 |
1 2 3 4 5 6 36 37 38 39 40 41 55 63
|
ipcnlem2 |
|
65 |
64
|
expr |
|
66 |
65
|
ralrimivva |
|
67 |
|
breq2 |
|
68 |
|
breq2 |
|
69 |
67 68
|
anbi12d |
|
70 |
69
|
imbi1d |
|
71 |
70
|
2ralbidv |
|
72 |
71
|
rspcev |
|
73 |
35 66 72
|
syl2anc |
|