Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|
2 |
|
phllmhm.h |
|
3 |
|
phllmhm.v |
|
4 |
|
ipdir.g |
|
5 |
|
ipdir.p |
|
6 |
|
simpl |
|
7 |
|
simpr2 |
|
8 |
|
simpr3 |
|
9 |
|
simpr1 |
|
10 |
1 2 3 4 5
|
ipdir |
|
11 |
6 7 8 9 10
|
syl13anc |
|
12 |
11
|
fveq2d |
|
13 |
1
|
phlsrng |
|
14 |
13
|
adantr |
|
15 |
|
eqid |
|
16 |
1 2 3 15
|
ipcl |
|
17 |
6 7 9 16
|
syl3anc |
|
18 |
1 2 3 15
|
ipcl |
|
19 |
6 8 9 18
|
syl3anc |
|
20 |
|
eqid |
|
21 |
20 15 5
|
srngadd |
|
22 |
14 17 19 21
|
syl3anc |
|
23 |
12 22
|
eqtrd |
|
24 |
|
phllmod |
|
25 |
24
|
adantr |
|
26 |
3 4
|
lmodvacl |
|
27 |
25 7 8 26
|
syl3anc |
|
28 |
1 2 3 20
|
ipcj |
|
29 |
6 27 9 28
|
syl3anc |
|
30 |
1 2 3 20
|
ipcj |
|
31 |
6 7 9 30
|
syl3anc |
|
32 |
1 2 3 20
|
ipcj |
|
33 |
6 8 9 32
|
syl3anc |
|
34 |
31 33
|
oveq12d |
|
35 |
23 29 34
|
3eqtr3d |
|