Metamath Proof Explorer


Theorem ipdir

Description: Distributive law for inner product (right-distributivity). Equation I3 of Ponnusamy p. 362. (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipdir.g + ˙ = + W
ipdir.p ˙ = + F
Assertion ipdir W PreHil A V B V C V A + ˙ B , ˙ C = A , ˙ C ˙ B , ˙ C

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipdir.g + ˙ = + W
5 ipdir.p ˙ = + F
6 eqid x V x , ˙ C = x V x , ˙ C
7 1 2 3 6 phllmhm W PreHil C V x V x , ˙ C W LMHom ringLMod F
8 7 3ad2antr3 W PreHil A V B V C V x V x , ˙ C W LMHom ringLMod F
9 lmghm x V x , ˙ C W LMHom ringLMod F x V x , ˙ C W GrpHom ringLMod F
10 8 9 syl W PreHil A V B V C V x V x , ˙ C W GrpHom ringLMod F
11 simpr1 W PreHil A V B V C V A V
12 simpr2 W PreHil A V B V C V B V
13 rlmplusg + F = + ringLMod F
14 5 13 eqtri ˙ = + ringLMod F
15 3 4 14 ghmlin x V x , ˙ C W GrpHom ringLMod F A V B V x V x , ˙ C A + ˙ B = x V x , ˙ C A ˙ x V x , ˙ C B
16 10 11 12 15 syl3anc W PreHil A V B V C V x V x , ˙ C A + ˙ B = x V x , ˙ C A ˙ x V x , ˙ C B
17 phllmod W PreHil W LMod
18 3 4 lmodvacl W LMod A V B V A + ˙ B V
19 17 18 syl3an1 W PreHil A V B V A + ˙ B V
20 19 3adant3r3 W PreHil A V B V C V A + ˙ B V
21 oveq1 x = A + ˙ B x , ˙ C = A + ˙ B , ˙ C
22 ovex x , ˙ C V
23 21 6 22 fvmpt3i A + ˙ B V x V x , ˙ C A + ˙ B = A + ˙ B , ˙ C
24 20 23 syl W PreHil A V B V C V x V x , ˙ C A + ˙ B = A + ˙ B , ˙ C
25 oveq1 x = A x , ˙ C = A , ˙ C
26 25 6 22 fvmpt3i A V x V x , ˙ C A = A , ˙ C
27 11 26 syl W PreHil A V B V C V x V x , ˙ C A = A , ˙ C
28 oveq1 x = B x , ˙ C = B , ˙ C
29 28 6 22 fvmpt3i B V x V x , ˙ C B = B , ˙ C
30 12 29 syl W PreHil A V B V C V x V x , ˙ C B = B , ˙ C
31 27 30 oveq12d W PreHil A V B V C V x V x , ˙ C A ˙ x V x , ˙ C B = A , ˙ C ˙ B , ˙ C
32 16 24 31 3eqtr3d W PreHil A V B V C V A + ˙ B , ˙ C = A , ˙ C ˙ B , ˙ C