Metamath Proof Explorer


Theorem ipdiri

Description: Distributive law for inner product. Equation I3 of Ponnusamy p. 362. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
Assertion ipdiri A X B X C X A G B P C = A P C + B P C

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 oveq1 A = if A X A 0 vec U A G B = if A X A 0 vec U G B
7 6 oveq1d A = if A X A 0 vec U A G B P C = if A X A 0 vec U G B P C
8 oveq1 A = if A X A 0 vec U A P C = if A X A 0 vec U P C
9 8 oveq1d A = if A X A 0 vec U A P C + B P C = if A X A 0 vec U P C + B P C
10 7 9 eqeq12d A = if A X A 0 vec U A G B P C = A P C + B P C if A X A 0 vec U G B P C = if A X A 0 vec U P C + B P C
11 oveq2 B = if B X B 0 vec U if A X A 0 vec U G B = if A X A 0 vec U G if B X B 0 vec U
12 11 oveq1d B = if B X B 0 vec U if A X A 0 vec U G B P C = if A X A 0 vec U G if B X B 0 vec U P C
13 oveq1 B = if B X B 0 vec U B P C = if B X B 0 vec U P C
14 13 oveq2d B = if B X B 0 vec U if A X A 0 vec U P C + B P C = if A X A 0 vec U P C + if B X B 0 vec U P C
15 12 14 eqeq12d B = if B X B 0 vec U if A X A 0 vec U G B P C = if A X A 0 vec U P C + B P C if A X A 0 vec U G if B X B 0 vec U P C = if A X A 0 vec U P C + if B X B 0 vec U P C
16 oveq2 C = if C X C 0 vec U if A X A 0 vec U G if B X B 0 vec U P C = if A X A 0 vec U G if B X B 0 vec U P if C X C 0 vec U
17 oveq2 C = if C X C 0 vec U if A X A 0 vec U P C = if A X A 0 vec U P if C X C 0 vec U
18 oveq2 C = if C X C 0 vec U if B X B 0 vec U P C = if B X B 0 vec U P if C X C 0 vec U
19 17 18 oveq12d C = if C X C 0 vec U if A X A 0 vec U P C + if B X B 0 vec U P C = if A X A 0 vec U P if C X C 0 vec U + if B X B 0 vec U P if C X C 0 vec U
20 16 19 eqeq12d C = if C X C 0 vec U if A X A 0 vec U G if B X B 0 vec U P C = if A X A 0 vec U P C + if B X B 0 vec U P C if A X A 0 vec U G if B X B 0 vec U P if C X C 0 vec U = if A X A 0 vec U P if C X C 0 vec U + if B X B 0 vec U P if C X C 0 vec U
21 eqid 0 vec U = 0 vec U
22 1 21 5 elimph if A X A 0 vec U X
23 1 21 5 elimph if B X B 0 vec U X
24 1 21 5 elimph if C X C 0 vec U X
25 1 2 3 4 5 22 23 24 ipdirilem if A X A 0 vec U G if B X B 0 vec U P if C X C 0 vec U = if A X A 0 vec U P if C X C 0 vec U + if B X B 0 vec U P if C X C 0 vec U
26 10 15 20 25 dedth3h A X B X C X A G B P C = A P C + B P C