Metamath Proof Explorer


Theorem ipdirilem

Description: Lemma for ipdiri . (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ipdiri.8 A X
ipdiri.9 B X
ipdiri.10 C X
Assertion ipdirilem A G B P C = A P C + B P C

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ipdiri.8 A X
7 ipdiri.9 B X
8 ipdiri.10 C X
9 2cn 2
10 2ne0 2 0
11 9 10 recidi 2 1 2 = 1
12 11 oveq1i 2 1 2 S A G B = 1 S A G B
13 5 phnvi U NrmCVec
14 halfcn 1 2
15 1 2 nvgcl U NrmCVec A X B X A G B X
16 13 6 7 15 mp3an A G B X
17 9 14 16 3pm3.2i 2 1 2 A G B X
18 1 3 nvsass U NrmCVec 2 1 2 A G B X 2 1 2 S A G B = 2 S 1 2 S A G B
19 13 17 18 mp2an 2 1 2 S A G B = 2 S 1 2 S A G B
20 1 3 nvsid U NrmCVec A G B X 1 S A G B = A G B
21 13 16 20 mp2an 1 S A G B = A G B
22 12 19 21 3eqtr3i 2 S 1 2 S A G B = A G B
23 22 oveq1i 2 S 1 2 S A G B P C = A G B P C
24 1 3 nvscl U NrmCVec 1 2 A G B X 1 2 S A G B X
25 13 14 16 24 mp3an 1 2 S A G B X
26 1 2 3 4 5 25 8 ip2i 2 S 1 2 S A G B P C = 2 1 2 S A G B P C
27 23 26 eqtr3i A G B P C = 2 1 2 S A G B P C
28 neg1cn 1
29 1 3 nvscl U NrmCVec 1 B X -1 S B X
30 13 28 7 29 mp3an -1 S B X
31 1 2 nvgcl U NrmCVec A X -1 S B X A G -1 S B X
32 13 6 30 31 mp3an A G -1 S B X
33 1 3 nvscl U NrmCVec 1 2 A G -1 S B X 1 2 S A G -1 S B X
34 13 14 32 33 mp3an 1 2 S A G -1 S B X
35 1 2 3 4 5 25 34 8 ip1i 1 2 S A G B G 1 2 S A G -1 S B P C + 1 2 S A G B G -1 S 1 2 S A G -1 S B P C = 2 1 2 S A G B P C
36 eqid 1 st U = 1 st U
37 36 nvvc U NrmCVec 1 st U CVec OLD
38 13 37 ax-mp 1 st U CVec OLD
39 2 vafval G = 1 st 1 st U
40 39 vcablo 1 st U CVec OLD G AbelOp
41 38 40 ax-mp G AbelOp
42 6 7 pm3.2i A X B X
43 6 30 pm3.2i A X -1 S B X
44 1 2 bafval X = ran G
45 44 ablo4 G AbelOp A X B X A X -1 S B X A G B G A G -1 S B = A G A G B G -1 S B
46 41 42 43 45 mp3an A G B G A G -1 S B = A G A G B G -1 S B
47 3 smfval S = 2 nd 1 st U
48 39 47 44 vc2OLD 1 st U CVec OLD A X A G A = 2 S A
49 38 6 48 mp2an A G A = 2 S A
50 eqid 0 vec U = 0 vec U
51 1 2 3 50 nvrinv U NrmCVec B X B G -1 S B = 0 vec U
52 13 7 51 mp2an B G -1 S B = 0 vec U
53 49 52 oveq12i A G A G B G -1 S B = 2 S A G 0 vec U
54 1 3 nvscl U NrmCVec 2 A X 2 S A X
55 13 9 6 54 mp3an 2 S A X
56 1 2 50 nv0rid U NrmCVec 2 S A X 2 S A G 0 vec U = 2 S A
57 13 55 56 mp2an 2 S A G 0 vec U = 2 S A
58 46 53 57 3eqtri A G B G A G -1 S B = 2 S A
59 58 oveq2i 1 2 S A G B G A G -1 S B = 1 2 S 2 S A
60 14 9 6 3pm3.2i 1 2 2 A X
61 1 3 nvsass U NrmCVec 1 2 2 A X 1 2 2 S A = 1 2 S 2 S A
62 13 60 61 mp2an 1 2 2 S A = 1 2 S 2 S A
63 59 62 eqtr4i 1 2 S A G B G A G -1 S B = 1 2 2 S A
64 14 16 32 3pm3.2i 1 2 A G B X A G -1 S B X
65 1 2 3 nvdi U NrmCVec 1 2 A G B X A G -1 S B X 1 2 S A G B G A G -1 S B = 1 2 S A G B G 1 2 S A G -1 S B
66 13 64 65 mp2an 1 2 S A G B G A G -1 S B = 1 2 S A G B G 1 2 S A G -1 S B
67 ax-1cn 1
68 67 9 10 divcan1i 1 2 2 = 1
69 68 oveq1i 1 2 2 S A = 1 S A
70 1 3 nvsid U NrmCVec A X 1 S A = A
71 13 6 70 mp2an 1 S A = A
72 69 71 eqtri 1 2 2 S A = A
73 63 66 72 3eqtr3i 1 2 S A G B G 1 2 S A G -1 S B = A
74 73 oveq1i 1 2 S A G B G 1 2 S A G -1 S B P C = A P C
75 28 14 mulcomi -1 1 2 = 1 2 -1
76 75 oveq1i -1 1 2 S A G -1 S B = 1 2 -1 S A G -1 S B
77 28 14 32 3pm3.2i 1 1 2 A G -1 S B X
78 1 3 nvsass U NrmCVec 1 1 2 A G -1 S B X -1 1 2 S A G -1 S B = -1 S 1 2 S A G -1 S B
79 13 77 78 mp2an -1 1 2 S A G -1 S B = -1 S 1 2 S A G -1 S B
80 14 28 32 3pm3.2i 1 2 1 A G -1 S B X
81 1 3 nvsass U NrmCVec 1 2 1 A G -1 S B X 1 2 -1 S A G -1 S B = 1 2 S -1 S A G -1 S B
82 13 80 81 mp2an 1 2 -1 S A G -1 S B = 1 2 S -1 S A G -1 S B
83 28 6 30 3pm3.2i 1 A X -1 S B X
84 1 2 3 nvdi U NrmCVec 1 A X -1 S B X -1 S A G -1 S B = -1 S A G -1 S -1 S B
85 13 83 84 mp2an -1 S A G -1 S B = -1 S A G -1 S -1 S B
86 neg1mulneg1e1 -1 -1 = 1
87 86 oveq1i -1 -1 S B = 1 S B
88 28 28 7 3pm3.2i 1 1 B X
89 1 3 nvsass U NrmCVec 1 1 B X -1 -1 S B = -1 S -1 S B
90 13 88 89 mp2an -1 -1 S B = -1 S -1 S B
91 1 3 nvsid U NrmCVec B X 1 S B = B
92 13 7 91 mp2an 1 S B = B
93 87 90 92 3eqtr3i -1 S -1 S B = B
94 93 oveq2i -1 S A G -1 S -1 S B = -1 S A G B
95 85 94 eqtri -1 S A G -1 S B = -1 S A G B
96 95 oveq2i 1 2 S -1 S A G -1 S B = 1 2 S -1 S A G B
97 82 96 eqtri 1 2 -1 S A G -1 S B = 1 2 S -1 S A G B
98 76 79 97 3eqtr3i -1 S 1 2 S A G -1 S B = 1 2 S -1 S A G B
99 98 oveq2i 1 2 S A G B G -1 S 1 2 S A G -1 S B = 1 2 S A G B G 1 2 S -1 S A G B
100 1 3 nvscl U NrmCVec 1 A X -1 S A X
101 13 28 6 100 mp3an -1 S A X
102 1 2 nvgcl U NrmCVec -1 S A X B X -1 S A G B X
103 13 101 7 102 mp3an -1 S A G B X
104 14 16 103 3pm3.2i 1 2 A G B X -1 S A G B X
105 1 2 3 nvdi U NrmCVec 1 2 A G B X -1 S A G B X 1 2 S A G B G -1 S A G B = 1 2 S A G B G 1 2 S -1 S A G B
106 13 104 105 mp2an 1 2 S A G B G -1 S A G B = 1 2 S A G B G 1 2 S -1 S A G B
107 99 106 eqtr4i 1 2 S A G B G -1 S 1 2 S A G -1 S B = 1 2 S A G B G -1 S A G B
108 101 7 pm3.2i -1 S A X B X
109 44 ablo4 G AbelOp A X B X -1 S A X B X A G B G -1 S A G B = A G -1 S A G B G B
110 41 42 108 109 mp3an A G B G -1 S A G B = A G -1 S A G B G B
111 1 2 3 50 nvrinv U NrmCVec A X A G -1 S A = 0 vec U
112 13 6 111 mp2an A G -1 S A = 0 vec U
113 112 oveq1i A G -1 S A G B G B = 0 vec U G B G B
114 1 2 nvgcl U NrmCVec B X B X B G B X
115 13 7 7 114 mp3an B G B X
116 1 2 50 nv0lid U NrmCVec B G B X 0 vec U G B G B = B G B
117 13 115 116 mp2an 0 vec U G B G B = B G B
118 113 117 eqtri A G -1 S A G B G B = B G B
119 39 47 44 vc2OLD 1 st U CVec OLD B X B G B = 2 S B
120 38 7 119 mp2an B G B = 2 S B
121 110 118 120 3eqtri A G B G -1 S A G B = 2 S B
122 121 oveq2i 1 2 S A G B G -1 S A G B = 1 2 S 2 S B
123 14 9 7 3pm3.2i 1 2 2 B X
124 1 3 nvsass U NrmCVec 1 2 2 B X 1 2 2 S B = 1 2 S 2 S B
125 13 123 124 mp2an 1 2 2 S B = 1 2 S 2 S B
126 68 oveq1i 1 2 2 S B = 1 S B
127 122 125 126 3eqtr2i 1 2 S A G B G -1 S A G B = 1 S B
128 107 127 92 3eqtri 1 2 S A G B G -1 S 1 2 S A G -1 S B = B
129 128 oveq1i 1 2 S A G B G -1 S 1 2 S A G -1 S B P C = B P C
130 74 129 oveq12i 1 2 S A G B G 1 2 S A G -1 S B P C + 1 2 S A G B G -1 S 1 2 S A G -1 S B P C = A P C + B P C
131 27 35 130 3eqtr2i A G B P C = A P C + B P C