Metamath Proof Explorer


Theorem ipf

Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ipcl.1 X = BaseSet U
ipcl.7 P = 𝑖OLD U
Assertion ipf U NrmCVec P : X × X

Proof

Step Hyp Ref Expression
1 ipcl.1 X = BaseSet U
2 ipcl.7 P = 𝑖OLD U
3 eqid + v U = + v U
4 eqid 𝑠OLD U = 𝑠OLD U
5 eqid norm CV U = norm CV U
6 1 3 4 5 2 ipval U NrmCVec x X y X x P y = k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4
7 1 2 dipcl U NrmCVec x X y X x P y
8 6 7 eqeltrrd U NrmCVec x X y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4
9 8 3expib U NrmCVec x X y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4
10 9 ralrimivv U NrmCVec x X y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4
11 eqid x X , y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4 = x X , y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4
12 11 fmpo x X y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4 x X , y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4 : X × X
13 10 12 sylib U NrmCVec x X , y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4 : X × X
14 1 3 4 5 2 dipfval U NrmCVec P = x X , y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4
15 14 feq1d U NrmCVec P : X × X x X , y X k = 1 4 i k norm CV U x + v U i k 𝑠OLD U y 2 4 : X × X
16 13 15 mpbird U NrmCVec P : X × X