Metamath Proof Explorer


Theorem ipfeq

Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ipffval.1 V = Base W
ipffval.2 , ˙ = 𝑖 W
ipffval.3 · ˙ = if W
Assertion ipfeq , ˙ Fn V × V · ˙ = , ˙

Proof

Step Hyp Ref Expression
1 ipffval.1 V = Base W
2 ipffval.2 , ˙ = 𝑖 W
3 ipffval.3 · ˙ = if W
4 1 2 3 ipffval · ˙ = x V , y V x , ˙ y
5 fnov , ˙ Fn V × V , ˙ = x V , y V x , ˙ y
6 5 biimpi , ˙ Fn V × V , ˙ = x V , y V x , ˙ y
7 4 6 eqtr4id , ˙ Fn V × V · ˙ = , ˙