Metamath Proof Explorer


Theorem ipffn

Description: The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses ipffn.1 V = Base W
ipffn.2 , ˙ = if W
Assertion ipffn , ˙ Fn V × V

Proof

Step Hyp Ref Expression
1 ipffn.1 V = Base W
2 ipffn.2 , ˙ = if W
3 eqid 𝑖 W = 𝑖 W
4 1 3 2 ipffval , ˙ = x V , y V x 𝑖 W y
5 ovex x 𝑖 W y V
6 4 5 fnmpoi , ˙ Fn V × V