Metamath Proof Explorer


Theorem ipffval

Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses ipffval.1 V = Base W
ipffval.2 , ˙ = 𝑖 W
ipffval.3 · ˙ = if W
Assertion ipffval · ˙ = x V , y V x , ˙ y

Proof

Step Hyp Ref Expression
1 ipffval.1 V = Base W
2 ipffval.2 , ˙ = 𝑖 W
3 ipffval.3 · ˙ = if W
4 fveq2 g = W Base g = Base W
5 4 1 eqtr4di g = W Base g = V
6 fveq2 g = W 𝑖 g = 𝑖 W
7 6 2 eqtr4di g = W 𝑖 g = , ˙
8 7 oveqd g = W x 𝑖 g y = x , ˙ y
9 5 5 8 mpoeq123dv g = W x Base g , y Base g x 𝑖 g y = x V , y V x , ˙ y
10 df-ipf if = g V x Base g , y Base g x 𝑖 g y
11 1 fvexi V V
12 2 fvexi , ˙ V
13 12 rnex ran , ˙ V
14 p0ex V
15 13 14 unex ran , ˙ V
16 df-ov x , ˙ y = , ˙ x y
17 fvrn0 , ˙ x y ran , ˙
18 16 17 eqeltri x , ˙ y ran , ˙
19 18 rgen2w x V y V x , ˙ y ran , ˙
20 11 11 15 19 mpoexw x V , y V x , ˙ y V
21 9 10 20 fvmpt W V if W = x V , y V x , ˙ y
22 fvprc ¬ W V if W =
23 fvprc ¬ W V Base W =
24 1 23 syl5eq ¬ W V V =
25 24 olcd ¬ W V V = V =
26 0mpo0 V = V = x V , y V x , ˙ y =
27 25 26 syl ¬ W V x V , y V x , ˙ y =
28 22 27 eqtr4d ¬ W V if W = x V , y V x , ˙ y
29 21 28 pm2.61i if W = x V , y V x , ˙ y
30 3 29 eqtri · ˙ = x V , y V x , ˙ y