Metamath Proof Explorer


Theorem ipfval

Description: The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ipffval.1 V = Base W
ipffval.2 , ˙ = 𝑖 W
ipffval.3 · ˙ = if W
Assertion ipfval X V Y V X · ˙ Y = X , ˙ Y

Proof

Step Hyp Ref Expression
1 ipffval.1 V = Base W
2 ipffval.2 , ˙ = 𝑖 W
3 ipffval.3 · ˙ = if W
4 oveq12 x = X y = Y x , ˙ y = X , ˙ Y
5 1 2 3 ipffval · ˙ = x V , y V x , ˙ y
6 ovex X , ˙ Y V
7 4 5 6 ovmpoa X V Y V X · ˙ Y = X , ˙ Y