Metamath Proof Explorer


Theorem ipge0

Description: The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses reipcl.v V = Base W
reipcl.h , ˙ = 𝑖 W
Assertion ipge0 W CPreHil A V 0 A , ˙ A

Proof

Step Hyp Ref Expression
1 reipcl.v V = Base W
2 reipcl.h , ˙ = 𝑖 W
3 cphngp W CPreHil W NrmGrp
4 eqid norm W = norm W
5 1 4 nmcl W NrmGrp A V norm W A
6 3 5 sylan W CPreHil A V norm W A
7 6 sqge0d W CPreHil A V 0 norm W A 2
8 1 2 4 nmsq W CPreHil A V norm W A 2 = A , ˙ A
9 7 8 breqtrd W CPreHil A V 0 A , ˙ A