Metamath Proof Explorer


Theorem ipidsq

Description: The inner product of a vector with itself is the square of the vector's norm. Equation I4 of Ponnusamy p. 362. (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipid.1 X = BaseSet U
ipid.6 N = norm CV U
ipid.7 P = 𝑖OLD U
Assertion ipidsq U NrmCVec A X A P A = N A 2

Proof

Step Hyp Ref Expression
1 ipid.1 X = BaseSet U
2 ipid.6 N = norm CV U
3 ipid.7 P = 𝑖OLD U
4 eqid + v U = + v U
5 eqid 𝑠OLD U = 𝑠OLD U
6 1 4 5 2 3 ipval2 U NrmCVec A X A X A P A = N A + v U A 2 - N A + v U -1 𝑠OLD U A 2 + i N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 4
7 6 3anidm23 U NrmCVec A X A P A = N A + v U A 2 - N A + v U -1 𝑠OLD U A 2 + i N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 4
8 1 4 5 nv2 U NrmCVec A X A + v U A = 2 𝑠OLD U A
9 8 fveq2d U NrmCVec A X N A + v U A = N 2 𝑠OLD U A
10 2re 2
11 0le2 0 2
12 10 11 pm3.2i 2 0 2
13 1 5 2 nvsge0 U NrmCVec 2 0 2 A X N 2 𝑠OLD U A = 2 N A
14 12 13 mp3an2 U NrmCVec A X N 2 𝑠OLD U A = 2 N A
15 9 14 eqtrd U NrmCVec A X N A + v U A = 2 N A
16 15 oveq1d U NrmCVec A X N A + v U A 2 = 2 N A 2
17 1 2 nvcl U NrmCVec A X N A
18 17 recnd U NrmCVec A X N A
19 2cn 2
20 2nn0 2 0
21 mulexp 2 N A 2 0 2 N A 2 = 2 2 N A 2
22 19 20 21 mp3an13 N A 2 N A 2 = 2 2 N A 2
23 18 22 syl U NrmCVec A X 2 N A 2 = 2 2 N A 2
24 sq2 2 2 = 4
25 24 oveq1i 2 2 N A 2 = 4 N A 2
26 23 25 eqtrdi U NrmCVec A X 2 N A 2 = 4 N A 2
27 16 26 eqtrd U NrmCVec A X N A + v U A 2 = 4 N A 2
28 eqid 0 vec U = 0 vec U
29 1 4 5 28 nvrinv U NrmCVec A X A + v U -1 𝑠OLD U A = 0 vec U
30 29 fveq2d U NrmCVec A X N A + v U -1 𝑠OLD U A = N 0 vec U
31 28 2 nvz0 U NrmCVec N 0 vec U = 0
32 31 adantr U NrmCVec A X N 0 vec U = 0
33 30 32 eqtrd U NrmCVec A X N A + v U -1 𝑠OLD U A = 0
34 33 sq0id U NrmCVec A X N A + v U -1 𝑠OLD U A 2 = 0
35 27 34 oveq12d U NrmCVec A X N A + v U A 2 N A + v U -1 𝑠OLD U A 2 = 4 N A 2 0
36 4cn 4
37 18 sqcld U NrmCVec A X N A 2
38 mulcl 4 N A 2 4 N A 2
39 36 37 38 sylancr U NrmCVec A X 4 N A 2
40 39 subid1d U NrmCVec A X 4 N A 2 0 = 4 N A 2
41 35 40 eqtrd U NrmCVec A X N A + v U A 2 N A + v U -1 𝑠OLD U A 2 = 4 N A 2
42 1re 1
43 neg1rr 1
44 absreim 1 1 1 + i -1 = 1 2 + 1 2
45 42 43 44 mp2an 1 + i -1 = 1 2 + 1 2
46 ax-icn i
47 ax-1cn 1
48 46 47 mulneg2i i -1 = i 1
49 46 mulid1i i 1 = i
50 49 negeqi i 1 = i
51 48 50 eqtri i -1 = i
52 51 oveq2i 1 + i -1 = 1 + i
53 52 fveq2i 1 + i -1 = 1 + i
54 sqneg 1 1 2 = 1 2
55 47 54 ax-mp 1 2 = 1 2
56 55 oveq2i 1 2 + 1 2 = 1 2 + 1 2
57 56 fveq2i 1 2 + 1 2 = 1 2 + 1 2
58 45 53 57 3eqtr3i 1 + i = 1 2 + 1 2
59 absreim 1 1 1 + i 1 = 1 2 + 1 2
60 42 42 59 mp2an 1 + i 1 = 1 2 + 1 2
61 49 oveq2i 1 + i 1 = 1 + i
62 61 fveq2i 1 + i 1 = 1 + i
63 58 60 62 3eqtr2i 1 + i = 1 + i
64 63 oveq1i 1 + i N A = 1 + i N A
65 negicn i
66 47 65 addcli 1 + i
67 1 5 2 nvs U NrmCVec 1 + i A X N 1 + i 𝑠OLD U A = 1 + i N A
68 66 67 mp3an2 U NrmCVec A X N 1 + i 𝑠OLD U A = 1 + i N A
69 47 46 addcli 1 + i
70 1 5 2 nvs U NrmCVec 1 + i A X N 1 + i 𝑠OLD U A = 1 + i N A
71 69 70 mp3an2 U NrmCVec A X N 1 + i 𝑠OLD U A = 1 + i N A
72 64 68 71 3eqtr4a U NrmCVec A X N 1 + i 𝑠OLD U A = N 1 + i 𝑠OLD U A
73 1 4 5 nvdir U NrmCVec 1 i A X 1 + i 𝑠OLD U A = 1 𝑠OLD U A + v U i 𝑠OLD U A
74 47 73 mp3anr1 U NrmCVec i A X 1 + i 𝑠OLD U A = 1 𝑠OLD U A + v U i 𝑠OLD U A
75 65 74 mpanr1 U NrmCVec A X 1 + i 𝑠OLD U A = 1 𝑠OLD U A + v U i 𝑠OLD U A
76 1 5 nvsid U NrmCVec A X 1 𝑠OLD U A = A
77 76 oveq1d U NrmCVec A X 1 𝑠OLD U A + v U i 𝑠OLD U A = A + v U i 𝑠OLD U A
78 75 77 eqtrd U NrmCVec A X 1 + i 𝑠OLD U A = A + v U i 𝑠OLD U A
79 78 fveq2d U NrmCVec A X N 1 + i 𝑠OLD U A = N A + v U i 𝑠OLD U A
80 1 4 5 nvdir U NrmCVec 1 i A X 1 + i 𝑠OLD U A = 1 𝑠OLD U A + v U i 𝑠OLD U A
81 47 80 mp3anr1 U NrmCVec i A X 1 + i 𝑠OLD U A = 1 𝑠OLD U A + v U i 𝑠OLD U A
82 46 81 mpanr1 U NrmCVec A X 1 + i 𝑠OLD U A = 1 𝑠OLD U A + v U i 𝑠OLD U A
83 76 oveq1d U NrmCVec A X 1 𝑠OLD U A + v U i 𝑠OLD U A = A + v U i 𝑠OLD U A
84 82 83 eqtrd U NrmCVec A X 1 + i 𝑠OLD U A = A + v U i 𝑠OLD U A
85 84 fveq2d U NrmCVec A X N 1 + i 𝑠OLD U A = N A + v U i 𝑠OLD U A
86 72 79 85 3eqtr3d U NrmCVec A X N A + v U i 𝑠OLD U A = N A + v U i 𝑠OLD U A
87 86 oveq1d U NrmCVec A X N A + v U i 𝑠OLD U A 2 = N A + v U i 𝑠OLD U A 2
88 87 oveq2d U NrmCVec A X N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 = N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2
89 1 4 5 2 3 ipval2lem4 U NrmCVec A X A X i N A + v U i 𝑠OLD U A 2
90 46 89 mpan2 U NrmCVec A X A X N A + v U i 𝑠OLD U A 2
91 90 3anidm23 U NrmCVec A X N A + v U i 𝑠OLD U A 2
92 91 subidd U NrmCVec A X N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 = 0
93 88 92 eqtrd U NrmCVec A X N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 = 0
94 93 oveq2d U NrmCVec A X i N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 = i 0
95 it0e0 i 0 = 0
96 94 95 eqtrdi U NrmCVec A X i N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 = 0
97 41 96 oveq12d U NrmCVec A X N A + v U A 2 - N A + v U -1 𝑠OLD U A 2 + i N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 = 4 N A 2 + 0
98 39 addid1d U NrmCVec A X 4 N A 2 + 0 = 4 N A 2
99 97 98 eqtr2d U NrmCVec A X 4 N A 2 = N A + v U A 2 - N A + v U -1 𝑠OLD U A 2 + i N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2
100 99 oveq1d U NrmCVec A X 4 N A 2 4 = N A + v U A 2 - N A + v U -1 𝑠OLD U A 2 + i N A + v U i 𝑠OLD U A 2 N A + v U i 𝑠OLD U A 2 4
101 4ne0 4 0
102 divcan3 N A 2 4 4 0 4 N A 2 4 = N A 2
103 36 101 102 mp3an23 N A 2 4 N A 2 4 = N A 2
104 37 103 syl U NrmCVec A X 4 N A 2 4 = N A 2
105 7 100 104 3eqtr2d U NrmCVec A X A P A = N A 2