Metamath Proof Explorer


Theorem ipipcj

Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipcl.1 X = BaseSet U
ipcl.7 P = 𝑖OLD U
Assertion ipipcj U NrmCVec A X B X A P B B P A = A P B 2

Proof

Step Hyp Ref Expression
1 ipcl.1 X = BaseSet U
2 ipcl.7 P = 𝑖OLD U
3 1 2 dipcl U NrmCVec A X B X A P B
4 3 absvalsqd U NrmCVec A X B X A P B 2 = A P B A P B
5 1 2 dipcj U NrmCVec A X B X A P B = B P A
6 5 oveq2d U NrmCVec A X B X A P B A P B = A P B B P A
7 4 6 eqtr2d U NrmCVec A X B X A P B B P A = A P B 2