Metamath Proof Explorer


Theorem ipnm

Description: Norm expressed in terms of inner product. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipid.1 X = BaseSet U
ipid.6 N = norm CV U
ipid.7 P = 𝑖OLD U
Assertion ipnm U NrmCVec A X N A = A P A

Proof

Step Hyp Ref Expression
1 ipid.1 X = BaseSet U
2 ipid.6 N = norm CV U
3 ipid.7 P = 𝑖OLD U
4 1 2 3 ipidsq U NrmCVec A X A P A = N A 2
5 4 fveq2d U NrmCVec A X A P A = N A 2
6 1 2 nvcl U NrmCVec A X N A
7 1 2 nvge0 U NrmCVec A X 0 N A
8 6 7 sqrtsqd U NrmCVec A X N A 2 = N A
9 5 8 eqtr2d U NrmCVec A X N A = A P A