Metamath Proof Explorer


Theorem ipodrscl

Description: Direction by inclusion as used here implies sethood. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Assertion ipodrscl toInc A Dirset A V

Proof

Step Hyp Ref Expression
1 isipodrs toInc A Dirset A V A x A y A z A x y z
2 1 simp1bi toInc A Dirset A V