Step |
Hyp |
Ref |
Expression |
1 |
|
ipodrsima.f |
|
2 |
|
ipodrsima.m |
|
3 |
|
ipodrsima.d |
|
4 |
|
ipodrsima.s |
|
5 |
|
ipodrsima.a |
|
6 |
5
|
elexd |
|
7 |
|
isipodrs |
|
8 |
3 7
|
sylib |
|
9 |
8
|
simp2d |
|
10 |
|
fnimaeq0 |
|
11 |
1 4 10
|
syl2anc |
|
12 |
11
|
necon3bid |
|
13 |
9 12
|
mpbird |
|
14 |
8
|
simp3d |
|
15 |
|
simplll |
|
16 |
|
simpr |
|
17 |
4
|
ad2antrr |
|
18 |
|
simprr |
|
19 |
17 18
|
sseldd |
|
20 |
19
|
elpwid |
|
21 |
20
|
adantr |
|
22 |
|
vex |
|
23 |
|
vex |
|
24 |
|
sseq12 |
|
25 |
|
sseq1 |
|
26 |
25
|
adantl |
|
27 |
24 26
|
anbi12d |
|
28 |
27
|
anbi2d |
|
29 |
|
fveq2 |
|
30 |
|
fveq2 |
|
31 |
|
sseq12 |
|
32 |
29 30 31
|
syl2an |
|
33 |
28 32
|
imbi12d |
|
34 |
22 23 33 2
|
vtocl2 |
|
35 |
15 16 21 34
|
syl12anc |
|
36 |
35
|
ex |
|
37 |
|
simplll |
|
38 |
|
simpr |
|
39 |
20
|
adantr |
|
40 |
|
vex |
|
41 |
|
sseq12 |
|
42 |
25
|
adantl |
|
43 |
41 42
|
anbi12d |
|
44 |
43
|
anbi2d |
|
45 |
|
fveq2 |
|
46 |
|
sseq12 |
|
47 |
45 30 46
|
syl2an |
|
48 |
44 47
|
imbi12d |
|
49 |
40 23 48 2
|
vtocl2 |
|
50 |
37 38 39 49
|
syl12anc |
|
51 |
50
|
ex |
|
52 |
36 51
|
anim12d |
|
53 |
|
unss |
|
54 |
|
unss |
|
55 |
52 53 54
|
3imtr3g |
|
56 |
55
|
anassrs |
|
57 |
56
|
reximdva |
|
58 |
57
|
ralimdva |
|
59 |
58
|
ralimdva |
|
60 |
14 59
|
mpd |
|
61 |
|
uneq1 |
|
62 |
61
|
sseq1d |
|
63 |
62
|
rexbidv |
|
64 |
63
|
ralbidv |
|
65 |
64
|
ralima |
|
66 |
1 4 65
|
syl2anc |
|
67 |
|
uneq2 |
|
68 |
67
|
sseq1d |
|
69 |
68
|
rexbidv |
|
70 |
69
|
ralima |
|
71 |
1 4 70
|
syl2anc |
|
72 |
|
sseq2 |
|
73 |
72
|
rexima |
|
74 |
1 4 73
|
syl2anc |
|
75 |
74
|
ralbidv |
|
76 |
71 75
|
bitrd |
|
77 |
76
|
ralbidv |
|
78 |
66 77
|
bitrd |
|
79 |
60 78
|
mpbird |
|
80 |
|
isipodrs |
|
81 |
6 13 79 80
|
syl3anbrc |
|