Metamath Proof Explorer


Theorem ipoglb0

Description: The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses ipoglb0.i I = toInc F
ipoglb0.g φ G = glb I
ipoglb0.f φ F F
Assertion ipoglb0 φ G = F

Proof

Step Hyp Ref Expression
1 ipoglb0.i I = toInc F
2 ipoglb0.g φ G = glb I
3 ipoglb0.f φ F F
4 uniexr F F F V
5 3 4 syl φ F V
6 0ss F
7 6 a1i φ F
8 ssv x V
9 int0 = V
10 8 9 sseqtrri x
11 10 a1i x F x
12 11 rabeqc x F | x = F
13 12 unieqi x F | x = F
14 13 eqcomi F = x F | x
15 14 a1i φ F = x F | x
16 1 5 7 2 15 3 ipoglb φ G = F