Metamath Proof Explorer


Theorem ipoglbdm

Description: The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Hypotheses ipolub.i I = toInc F
ipolub.f φ F V
ipolub.s φ S F
ipoglb.g φ G = glb I
ipoglbdm.t φ T = x F | x S
Assertion ipoglbdm φ S dom G T F

Proof

Step Hyp Ref Expression
1 ipolub.i I = toInc F
2 ipolub.f φ F V
3 ipolub.s φ S F
4 ipoglb.g φ G = glb I
5 ipoglbdm.t φ T = x F | x S
6 1 ipobas F V F = Base I
7 2 6 syl φ F = Base I
8 eqidd φ I = I
9 eqid I = I
10 1 2 3 9 ipoglblem φ w F w S z F z S z w y S w I y z F y S z I y z I w
11 1 ipopos I Poset
12 11 a1i φ I Poset
13 7 8 4 10 12 glbeldm2d φ S dom G S F w F w S z F z S z w
14 3 13 mpbirand φ S dom G w F w S z F z S z w
15 5 ad2antrr φ w F w S z F z S z w T = x F | x S
16 unilbeu w F w S z F z S z w w = x F | x S
17 16 biimpa w F w S z F z S z w w = x F | x S
18 17 adantll φ w F w S z F z S z w w = x F | x S
19 15 18 eqtr4d φ w F w S z F z S z w T = w
20 simplr φ w F w S z F z S z w w F
21 19 20 eqeltrd φ w F w S z F z S z w T F
22 21 ex φ w F w S z F z S z w T F
23 simpr φ T F T F
24 unilbeu T F T S z F z S z T T = x F | x S
25 24 biimparc T = x F | x S T F T S z F z S z T
26 5 25 sylan φ T F T S z F z S z T
27 sseq1 w = T w S T S
28 sseq2 w = T z w z T
29 28 imbi2d w = T z S z w z S z T
30 29 ralbidv w = T z F z S z w z F z S z T
31 27 30 anbi12d w = T w S z F z S z w T S z F z S z T
32 22 23 26 31 rspceb2dv φ w F w S z F z S z w T F
33 14 32 bitrd φ S dom G T F