| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipolub.i |
|
| 2 |
|
ipolub.f |
|
| 3 |
|
ipolub.s |
|
| 4 |
|
ipoglb.g |
|
| 5 |
|
ipoglbdm.t |
|
| 6 |
1
|
ipobas |
|
| 7 |
2 6
|
syl |
|
| 8 |
|
eqidd |
|
| 9 |
|
eqid |
|
| 10 |
1 2 3 9
|
ipoglblem |
|
| 11 |
1
|
ipopos |
|
| 12 |
11
|
a1i |
|
| 13 |
7 8 4 10 12
|
glbeldm2d |
|
| 14 |
3 13
|
mpbirand |
|
| 15 |
5
|
ad2antrr |
|
| 16 |
|
unilbeu |
|
| 17 |
16
|
biimpa |
|
| 18 |
17
|
adantll |
|
| 19 |
15 18
|
eqtr4d |
|
| 20 |
|
simplr |
|
| 21 |
19 20
|
eqeltrd |
|
| 22 |
21
|
ex |
|
| 23 |
|
simpr |
|
| 24 |
|
unilbeu |
|
| 25 |
24
|
biimparc |
|
| 26 |
5 25
|
sylan |
|
| 27 |
|
sseq1 |
|
| 28 |
|
sseq2 |
|
| 29 |
28
|
imbi2d |
|
| 30 |
29
|
ralbidv |
|
| 31 |
27 30
|
anbi12d |
|
| 32 |
22 23 26 31
|
rspceb2dv |
|
| 33 |
14 32
|
bitrd |
|