Metamath Proof Explorer


Theorem ipolub

Description: The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with S e. dom U .) Could be significantly shortened if poslubdg is in quantified form. mrelatlub could potentially be shortened using this. See mrelatlubALT . (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Hypotheses ipolub.i I = toInc F
ipolub.f φ F V
ipolub.s φ S F
ipolub.u φ U = lub I
ipolubdm.t φ T = x F | S x
ipolub.t φ T F
Assertion ipolub φ U S = T

Proof

Step Hyp Ref Expression
1 ipolub.i I = toInc F
2 ipolub.f φ F V
3 ipolub.s φ S F
4 ipolub.u φ U = lub I
5 ipolubdm.t φ T = x F | S x
6 ipolub.t φ T F
7 eqid I = I
8 1 ipobas F V F = Base I
9 2 8 syl φ F = Base I
10 1 ipopos I Poset
11 10 a1i φ I Poset
12 breq1 w = y w I T y I T
13 intubeu T F S T v F S v T v T = x F | S x
14 13 biimpar T F T = x F | S x S T v F S v T v
15 6 5 14 syl2anc φ S T v F S v T v
16 1 2 3 7 ipolublem φ T F S T v F S v T v w S w I T v F w S w I v T I v
17 6 16 mpdan φ S T v F S v T v w S w I T v F w S w I v T I v
18 15 17 mpbid φ w S w I T v F w S w I v T I v
19 18 simpld φ w S w I T
20 19 adantr φ y S w S w I T
21 simpr φ y S y S
22 12 20 21 rspcdva φ y S y I T
23 breq2 v = z w I v w I z
24 23 ralbidv v = z w S w I v w S w I z
25 breq1 w = y w I z y I z
26 25 cbvralvw w S w I z y S y I z
27 24 26 bitrdi v = z w S w I v y S y I z
28 breq2 v = z T I v T I z
29 27 28 imbi12d v = z w S w I v T I v y S y I z T I z
30 18 simprd φ v F w S w I v T I v
31 30 adantr φ z F v F w S w I v T I v
32 simpr φ z F z F
33 29 31 32 rspcdva φ z F y S y I z T I z
34 33 3impia φ z F y S y I z T I z
35 7 9 4 11 3 6 22 34 poslubdg φ U S = T