Metamath Proof Explorer


Theorem ipolub0

Description: The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses ipoglb0.i I = toInc F
ipolub0.u φ U = lub I
ipolub0.f φ F F
ipolub0.v φ F V
Assertion ipolub0 φ U = F

Proof

Step Hyp Ref Expression
1 ipoglb0.i I = toInc F
2 ipolub0.u φ U = lub I
3 ipolub0.f φ F F
4 ipolub0.v φ F V
5 0ss F
6 5 a1i φ F
7 uni0 =
8 0ss x
9 7 8 eqsstri x
10 9 a1i x F x
11 10 rabeqc x F | x = F
12 11 eqcomi F = x F | x
13 12 inteqi F = x F | x
14 13 a1i φ F = x F | x
15 1 4 6 2 14 3 ipolub φ U = F