Step |
Hyp |
Ref |
Expression |
1 |
|
ipolub.i |
|
2 |
|
ipolub.f |
|
3 |
|
ipolub.s |
|
4 |
|
ipolublem.l |
|
5 |
|
unissb |
|
6 |
2
|
ad2antrr |
|
7 |
3
|
ad2antrr |
|
8 |
|
simpr |
|
9 |
7 8
|
sseldd |
|
10 |
|
simplr |
|
11 |
1 4
|
ipole |
|
12 |
6 9 10 11
|
syl3anc |
|
13 |
12
|
ralbidva |
|
14 |
5 13
|
bitr4id |
|
15 |
|
unissb |
|
16 |
6
|
adantlr |
|
17 |
9
|
adantlr |
|
18 |
|
simplr |
|
19 |
1 4
|
ipole |
|
20 |
16 17 18 19
|
syl3anc |
|
21 |
20
|
ralbidva |
|
22 |
15 21
|
bitr4id |
|
23 |
2
|
ad2antrr |
|
24 |
|
simplr |
|
25 |
|
simpr |
|
26 |
1 4
|
ipole |
|
27 |
23 24 25 26
|
syl3anc |
|
28 |
27
|
bicomd |
|
29 |
22 28
|
imbi12d |
|
30 |
29
|
ralbidva |
|
31 |
14 30
|
anbi12d |
|