Metamath Proof Explorer


Theorem ipopos

Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypothesis ipopos.i I = toInc F
Assertion ipopos I Poset

Proof

Step Hyp Ref Expression
1 ipopos.i I = toInc F
2 1 fvexi I V
3 2 a1i F V I V
4 1 ipobas F V F = Base I
5 eqidd F V I = I
6 ssid a a
7 eqid I = I
8 1 7 ipole F V a F a F a I a a a
9 8 3anidm23 F V a F a I a a a
10 6 9 mpbiri F V a F a I a
11 1 7 ipole F V a F b F a I b a b
12 1 7 ipole F V b F a F b I a b a
13 12 3com23 F V a F b F b I a b a
14 11 13 anbi12d F V a F b F a I b b I a a b b a
15 simpl a b b a a b
16 simpr a b b a b a
17 15 16 eqssd a b b a a = b
18 14 17 syl6bi F V a F b F a I b b I a a = b
19 sstr a b b c a c
20 19 a1i F V a F b F c F a b b c a c
21 11 3adant3r3 F V a F b F c F a I b a b
22 1 7 ipole F V b F c F b I c b c
23 22 3adant3r1 F V a F b F c F b I c b c
24 21 23 anbi12d F V a F b F c F a I b b I c a b b c
25 1 7 ipole F V a F c F a I c a c
26 25 3adant3r2 F V a F b F c F a I c a c
27 20 24 26 3imtr4d F V a F b F c F a I b b I c a I c
28 3 4 5 10 18 27 isposd F V I Poset
29 fvprc ¬ F V toInc F =
30 1 29 eqtrid ¬ F V I =
31 0pos Poset
32 30 31 eqeltrdi ¬ F V I Poset
33 28 32 pm2.61i I Poset