Metamath Proof Explorer


Theorem iporthcom

Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ip0l.z Z = 0 F
Assertion iporthcom W PreHil A V B V A , ˙ B = Z B , ˙ A = Z

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ip0l.z Z = 0 F
5 1 phlsrng W PreHil F *-Ring
6 5 3ad2ant1 W PreHil A V B V F *-Ring
7 eqid 𝑟𝑓 F = 𝑟𝑓 F
8 eqid Base F = Base F
9 7 8 srngf1o F *-Ring 𝑟𝑓 F : Base F 1-1 onto Base F
10 f1of1 𝑟𝑓 F : Base F 1-1 onto Base F 𝑟𝑓 F : Base F 1-1 Base F
11 6 9 10 3syl W PreHil A V B V 𝑟𝑓 F : Base F 1-1 Base F
12 1 2 3 8 ipcl W PreHil A V B V A , ˙ B Base F
13 phllmod W PreHil W LMod
14 13 3ad2ant1 W PreHil A V B V W LMod
15 1 8 4 lmod0cl W LMod Z Base F
16 14 15 syl W PreHil A V B V Z Base F
17 f1fveq 𝑟𝑓 F : Base F 1-1 Base F A , ˙ B Base F Z Base F 𝑟𝑓 F A , ˙ B = 𝑟𝑓 F Z A , ˙ B = Z
18 11 12 16 17 syl12anc W PreHil A V B V 𝑟𝑓 F A , ˙ B = 𝑟𝑓 F Z A , ˙ B = Z
19 eqid * F = * F
20 8 19 7 stafval A , ˙ B Base F 𝑟𝑓 F A , ˙ B = A , ˙ B * F
21 12 20 syl W PreHil A V B V 𝑟𝑓 F A , ˙ B = A , ˙ B * F
22 1 2 3 19 ipcj W PreHil A V B V A , ˙ B * F = B , ˙ A
23 21 22 eqtrd W PreHil A V B V 𝑟𝑓 F A , ˙ B = B , ˙ A
24 8 19 7 stafval Z Base F 𝑟𝑓 F Z = Z * F
25 16 24 syl W PreHil A V B V 𝑟𝑓 F Z = Z * F
26 19 4 srng0 F *-Ring Z * F = Z
27 6 26 syl W PreHil A V B V Z * F = Z
28 25 27 eqtrd W PreHil A V B V 𝑟𝑓 F Z = Z
29 23 28 eqeq12d W PreHil A V B V 𝑟𝑓 F A , ˙ B = 𝑟𝑓 F Z B , ˙ A = Z
30 18 29 bitr3d W PreHil A V B V A , ˙ B = Z B , ˙ A = Z