Metamath Proof Explorer


Theorem ipoval

Description: Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses ipoval.i I = toInc F
ipoval.l ˙ = x y | x y F x y
Assertion ipoval F V I = Base ndx F TopSet ndx ordTop ˙ ndx ˙ oc ndx x F y F | y x =

Proof

Step Hyp Ref Expression
1 ipoval.i I = toInc F
2 ipoval.l ˙ = x y | x y F x y
3 elex F V F V
4 vex f V
5 4 4 xpex f × f V
6 simpl x y f x y x y f
7 vex x V
8 vex y V
9 7 8 prss x f y f x y f
10 6 9 sylibr x y f x y x f y f
11 10 ssopab2i x y | x y f x y x y | x f y f
12 df-xp f × f = x y | x f y f
13 11 12 sseqtrri x y | x y f x y f × f
14 5 13 ssexi x y | x y f x y V
15 14 a1i f = F x y | x y f x y V
16 sseq2 f = F x y f x y F
17 16 anbi1d f = F x y f x y x y F x y
18 17 opabbidv f = F x y | x y f x y = x y | x y F x y
19 18 2 eqtr4di f = F x y | x y f x y = ˙
20 simpl f = F o = ˙ f = F
21 20 opeq2d f = F o = ˙ Base ndx f = Base ndx F
22 simpr f = F o = ˙ o = ˙
23 22 fveq2d f = F o = ˙ ordTop o = ordTop ˙
24 23 opeq2d f = F o = ˙ TopSet ndx ordTop o = TopSet ndx ordTop ˙
25 21 24 preq12d f = F o = ˙ Base ndx f TopSet ndx ordTop o = Base ndx F TopSet ndx ordTop ˙
26 22 opeq2d f = F o = ˙ ndx o = ndx ˙
27 id f = F f = F
28 rabeq f = F y f | y x = = y F | y x =
29 28 unieqd f = F y f | y x = = y F | y x =
30 27 29 mpteq12dv f = F x f y f | y x = = x F y F | y x =
31 30 adantr f = F o = ˙ x f y f | y x = = x F y F | y x =
32 31 opeq2d f = F o = ˙ oc ndx x f y f | y x = = oc ndx x F y F | y x =
33 26 32 preq12d f = F o = ˙ ndx o oc ndx x f y f | y x = = ndx ˙ oc ndx x F y F | y x =
34 25 33 uneq12d f = F o = ˙ Base ndx f TopSet ndx ordTop o ndx o oc ndx x f y f | y x = = Base ndx F TopSet ndx ordTop ˙ ndx ˙ oc ndx x F y F | y x =
35 15 19 34 csbied2 f = F x y | x y f x y / o Base ndx f TopSet ndx ordTop o ndx o oc ndx x f y f | y x = = Base ndx F TopSet ndx ordTop ˙ ndx ˙ oc ndx x F y F | y x =
36 df-ipo toInc = f V x y | x y f x y / o Base ndx f TopSet ndx ordTop o ndx o oc ndx x f y f | y x =
37 prex Base ndx F TopSet ndx ordTop ˙ V
38 prex ndx ˙ oc ndx x F y F | y x = V
39 37 38 unex Base ndx F TopSet ndx ordTop ˙ ndx ˙ oc ndx x F y F | y x = V
40 35 36 39 fvmpt F V toInc F = Base ndx F TopSet ndx ordTop ˙ ndx ˙ oc ndx x F y F | y x =
41 1 40 eqtrid F V I = Base ndx F TopSet ndx ordTop ˙ ndx ˙ oc ndx x F y F | y x =
42 3 41 syl F V I = Base ndx F TopSet ndx ordTop ˙ ndx ˙ oc ndx x F y F | y x =