Metamath Proof Explorer


Theorem iprod

Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypotheses zprod.1 Z = M
zprod.2 φ M
zprod.3 φ n Z y y 0 seq n × F y
iprod.4 φ k Z F k = B
iprod.5 φ k Z B
Assertion iprod φ k Z B = seq M × F

Proof

Step Hyp Ref Expression
1 zprod.1 Z = M
2 zprod.2 φ M
3 zprod.3 φ n Z y y 0 seq n × F y
4 iprod.4 φ k Z F k = B
5 iprod.5 φ k Z B
6 ssidd φ Z Z
7 iftrue k Z if k Z B 1 = B
8 7 adantl φ k Z if k Z B 1 = B
9 4 8 eqtr4d φ k Z F k = if k Z B 1
10 1 2 3 6 9 5 zprod φ k Z B = seq M × F