Metamath Proof Explorer


Theorem iprodcl

Description: The product of a non-trivially converging infinite sequence is a complex number. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodcl.1 Z = M
iprodcl.2 φ M
iprodcl.3 φ n Z y y 0 seq n × F y
iprodcl.4 φ k Z F k = A
iprodcl.5 φ k Z A
Assertion iprodcl φ k Z A

Proof

Step Hyp Ref Expression
1 iprodcl.1 Z = M
2 iprodcl.2 φ M
3 iprodcl.3 φ n Z y y 0 seq n × F y
4 iprodcl.4 φ k Z F k = A
5 iprodcl.5 φ k Z A
6 1 2 3 4 5 iprod φ k Z A = seq M × F
7 fclim : dom
8 4 5 eqeltrd φ k Z F k
9 1 3 8 ntrivcvg φ seq M × F dom
10 ffvelrn : dom seq M × F dom seq M × F
11 7 9 10 sylancr φ seq M × F
12 6 11 eqeltrd φ k Z A