Metamath Proof Explorer


Theorem iprodclim

Description: An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim.1 Z = M
iprodclim.2 φ M
iprodclim.3 φ n Z y y 0 seq n × F y
iprodclim.4 φ k Z F k = A
iprodclim.5 φ k Z A
iprodclim.6 φ seq M × F B
Assertion iprodclim φ k Z A = B

Proof

Step Hyp Ref Expression
1 iprodclim.1 Z = M
2 iprodclim.2 φ M
3 iprodclim.3 φ n Z y y 0 seq n × F y
4 iprodclim.4 φ k Z F k = A
5 iprodclim.5 φ k Z A
6 iprodclim.6 φ seq M × F B
7 1 2 3 4 5 iprod φ k Z A = seq M × F
8 fclim : dom
9 ffun : dom Fun
10 8 9 ax-mp Fun
11 funbrfv Fun seq M × F B seq M × F = B
12 10 6 11 mpsyl φ seq M × F = B
13 7 12 eqtrd φ k Z A = B