Metamath Proof Explorer


Theorem iprodclim2

Description: A converging product converges to its infinite product. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim.1 Z = M
iprodclim.2 φ M
iprodclim.3 φ n Z y y 0 seq n × F y
iprodclim.4 φ k Z F k = A
iprodclim.5 φ k Z A
Assertion iprodclim2 φ seq M × F k Z A

Proof

Step Hyp Ref Expression
1 iprodclim.1 Z = M
2 iprodclim.2 φ M
3 iprodclim.3 φ n Z y y 0 seq n × F y
4 iprodclim.4 φ k Z F k = A
5 iprodclim.5 φ k Z A
6 4 5 eqeltrd φ k Z F k
7 1 3 6 ntrivcvg φ seq M × F dom
8 climdm seq M × F dom seq M × F seq M × F
9 7 8 sylib φ seq M × F seq M × F
10 1 2 3 4 5 iprod φ k Z A = seq M × F
11 9 10 breqtrrd φ seq M × F k Z A