Step |
Hyp |
Ref |
Expression |
1 |
|
iprodmul.1 |
|
2 |
|
iprodmul.2 |
|
3 |
|
iprodmul.3 |
|
4 |
|
iprodmul.4 |
|
5 |
|
iprodmul.5 |
|
6 |
|
iprodmul.6 |
|
7 |
|
iprodmul.7 |
|
8 |
|
iprodmul.8 |
|
9 |
4 5
|
eqeltrd |
|
10 |
7 8
|
eqeltrd |
|
11 |
|
fveq2 |
|
12 |
|
fveq2 |
|
13 |
11 12
|
oveq12d |
|
14 |
|
eqid |
|
15 |
|
ovex |
|
16 |
13 14 15
|
fvmpt |
|
17 |
16
|
adantl |
|
18 |
1 3 9 6 10 17
|
ntrivcvgmul |
|
19 |
|
fveq2 |
|
20 |
|
fveq2 |
|
21 |
19 20
|
oveq12d |
|
22 |
21
|
cbvmptv |
|
23 |
|
seqeq3 |
|
24 |
22 23
|
ax-mp |
|
25 |
24
|
breq1i |
|
26 |
25
|
anbi2i |
|
27 |
26
|
exbii |
|
28 |
27
|
rexbii |
|
29 |
18 28
|
sylibr |
|
30 |
|
eqid |
|
31 |
|
fveq2 |
|
32 |
|
fveq2 |
|
33 |
31 32
|
oveq12d |
|
34 |
|
simpr |
|
35 |
9 10
|
mulcld |
|
36 |
30 33 34 35
|
fvmptd3 |
|
37 |
4 7
|
oveq12d |
|
38 |
36 37
|
eqtrd |
|
39 |
5 8
|
mulcld |
|
40 |
1 2 3 4 5
|
iprodclim2 |
|
41 |
|
seqex |
|
42 |
41
|
a1i |
|
43 |
1 2 6 7 8
|
iprodclim2 |
|
44 |
1 2 9
|
prodf |
|
45 |
44
|
ffvelrnda |
|
46 |
1 2 10
|
prodf |
|
47 |
46
|
ffvelrnda |
|
48 |
|
simpr |
|
49 |
48 1
|
eleqtrdi |
|
50 |
|
elfzuz |
|
51 |
50 1
|
eleqtrrdi |
|
52 |
51 9
|
sylan2 |
|
53 |
52
|
adantlr |
|
54 |
51 10
|
sylan2 |
|
55 |
54
|
adantlr |
|
56 |
36
|
adantlr |
|
57 |
51 56
|
sylan2 |
|
58 |
49 53 55 57
|
prodfmul |
|
59 |
1 2 40 42 43 45 47 58
|
climmul |
|
60 |
1 2 29 38 39 59
|
iprodclim |
|