Metamath Proof Explorer


Theorem iprodn0

Description: Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017)

Ref Expression
Hypotheses zprodn0.1 Z = M
zprodn0.2 φ M
zprodn0.3 φ X 0
zprodn0.4 φ seq M × F X
iprodn0.5 φ k Z F k = B
iprodn0.6 φ k Z B
Assertion iprodn0 φ k Z B = X

Proof

Step Hyp Ref Expression
1 zprodn0.1 Z = M
2 zprodn0.2 φ M
3 zprodn0.3 φ X 0
4 zprodn0.4 φ seq M × F X
5 iprodn0.5 φ k Z F k = B
6 iprodn0.6 φ k Z B
7 ssidd φ Z Z
8 iftrue k Z if k Z B 1 = B
9 8 adantl φ k Z if k Z B 1 = B
10 5 9 eqtr4d φ k Z F k = if k Z B 1
11 1 2 3 4 7 10 6 zprodn0 φ k Z B = X