Metamath Proof Explorer


Theorem iprodrecl

Description: The product of a non-trivially converging infinite real sequence is a real number. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodcl.1 Z = M
iprodcl.2 φ M
iprodcl.3 φ n Z y y 0 seq n × F y
iprodcl.4 φ k Z F k = A
iprodrecl.5 φ k Z A
Assertion iprodrecl φ k Z A

Proof

Step Hyp Ref Expression
1 iprodcl.1 Z = M
2 iprodcl.2 φ M
3 iprodcl.3 φ n Z y y 0 seq n × F y
4 iprodcl.4 φ k Z F k = A
5 iprodrecl.5 φ k Z A
6 5 recnd φ k Z A
7 1 2 3 4 6 iprodclim2 φ seq M × F k Z A
8 4 5 eqeltrd φ k Z F k
9 remulcl k x k x
10 9 adantl φ k x k x
11 1 2 8 10 seqf φ seq M × F : Z
12 11 ffvelrnda φ j Z seq M × F j
13 1 2 7 12 climrecl φ k Z A